1
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Gąsiorowska S, Lukaszuk K, Ropka-Molik K, Piórkowska K, Szmatoła T, Woclawek-Potocka I. Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing. BMC Genomics 2024; 25:632. [PMID: 38914933 PMCID: PMC11197288 DOI: 10.1186/s12864-024-10532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Sandra Gąsiorowska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, Gdansk, 80-210, Poland
- Invicta Research and Development Center, Sopot, 81-740, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland.
| |
Collapse
|
2
|
Idrees M, Kumar V, Khan AM, Joo MD, Uddin Z, Lee KW, Kong IK. Hesperetin activated SIRT1 neutralizes cadmium effects on the early bovine embryo development. Theriogenology 2022; 189:209-221. [DOI: 10.1016/j.theriogenology.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
|
3
|
Read CC, Edwards JL, Schrick FN, Rhinehart JD, Payton RR, Campagna SR, Castro HF, Klabnik JL, Moorey SE. Preovulatory serum estradiol concentration is positively associated with oocyte ATP and follicular fluid metabolite abundance in lactating beef cattle. J Anim Sci 2022; 100:6620784. [PMID: 35772749 PMCID: PMC9246671 DOI: 10.1093/jas/skac136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cattle induced to ovulate a small, physiologically immature preovulatory follicle had reduced oocyte developmental competence that resulted in decreased embryo cleavage and day 7 embryo quality compared with animals induced to ovulate a more advanced follicle. RNA-sequencing was performed on oocytes and their corresponding cumulus cells approximately 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the preovulatory gonadotropin surge suggested reduced capacity for glucose metabolism and oxidative phosphorylation in the cumulus cells and oocytes from follicles ≤11.7 mm, respectively. We hypothesized that induced ovulation of a small, physiologically immature preovulatory follicle results in a suboptimal follicular microenvironment and reduced oocyte metabolic capacity. We performed a study with the objective to determine the impact of preovulatory follicle diameter and serum estradiol concentration at GnRH administration on oocyte metabolic competence and follicular fluid metabolome profiles. We synchronized the development of a preovulatory follicle and collected the follicle contents via transvaginal aspiration approximately 19 h after GnRH administration in lactating beef cows (n = 319). We determined ATP levels and mitochondrial DNA (mtDNA) copy number in 110 oocytes and performed ultra-high-performance liquid chromatography–high resolution mass spectrometry metabolomic studies on 45 follicular fluid samples. Intraoocyte ATP and the amount of ATP produced per mtDNA copy number were associated with serum estradiol concentration at GnRH and time from GnRH administration to follicle aspiration (P < 0.05). mtDNA copy number was not related to follicle diameter at GnRH, serum estradiol concentration at GnRH, or any potential covariates (P > 0.10). We detected 90 metabolites in the aspirated follicular fluid. We identified 22 metabolites associated with serum estradiol concentration at GnRH and 63 metabolites associated with follicular fluid progesterone concentration at the time of follicle aspiration (FDR < 0.10). Pathway enrichment analysis of significant metabolites suggested altered proteinogenesis, citric acid cycle, and pyrimidine metabolism in follicles of reduced estrogenic capacity pre-gonadotropin surge or reduced progesterone production by the time of follicle aspiration.
Collapse
Affiliation(s)
- Casey C Read
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Justin D Rhinehart
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica L Klabnik
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Read CC, Bhandari S, Moorey SE. Concurrent Measurement of Mitochondrial DNA Copy Number and ATP Concentration in Single Bovine Oocytes. Methods Protoc 2021; 4:mps4040088. [PMID: 34940399 PMCID: PMC8708932 DOI: 10.3390/mps4040088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 01/16/2023] Open
Abstract
To sustain energy-demanding developmental processes, oocytes must accumulate adequate stores of metabolic substrates and mitochondrial numbers prior to the initiation of maturation. In the past, researchers have utilized pooled samples to study oocyte metabolism, and studies that related multiple metabolic outcomes in single oocytes, such as ATP concentration and mitochondrial DNA copy number, were not possible. Such scenarios decreased sensitivity to intraoocyte metabolic relationships and made it difficult to obtain adequate sample numbers during studies with limited oocyte availability. Therefore, we developed and validated procedures to measure both mitochondrial DNA (mtDNA) copy number and ATP quantity in single oocytes. Validation of our procedures revealed that we could successfully divide oocyte lysates into quarters and measure consistent results from each of the aliquots for both ATP and mtDNA copy number. Coefficient of variation between the values retrieved for mtDNA copy number and ATP quantity quadruplicates were 4.72 ± 0.98 and 1.61 ± 1.19, respectively. We then utilized our methodology to concurrently measure mtDNA copy number and ATP quantity in germinal vesicle (GV) and metaphase two (MII) stage oocytes. Our methods revealed a significant increase in ATP levels (GV = 628.02 ± 199.53 pg, MII = 1326.24 ± 199.86 pg, p < 0.001) and mtDNA copy number (GV = 490,799.4 ± 544,745.9 copies, MII = 1,087,126.9 ± 902,202.8 copies, p = 0.035) in MII compared to GV stage oocytes. This finding is consistent with published literature and provides further validation of the accuracy of our methods. The ability to produce consistent readings and expected results from aliquots of the lysate from a single oocyte reveals the sensitivity and feasibility of using this method.
Collapse
|
5
|
Carrillo-González DF, Hernández-Herrera DY, Maldonado-Estrada JG. The role of L-carnitine in bovine embryo metabolism. A review of the effect of supplementation with a metabolic modulator on in vitro embryo production. Anim Biotechnol 2021; 34:413-423. [PMID: 34154517 DOI: 10.1080/10495398.2021.1938593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Early embryo development is driven first by the maternal RNAs and proteins accumulated during the oocyte's cytoplasmic maturation and then after the embryo genome activation. In mammalian cells, ATP generation occurs via oxidative pathways or by glycolysis, whereas in embryonic stem cells, the consumption of glucose, pyruvate, lipids, and amino acids results in ATP synthesis. Although the bovine embryo has energy reserves in glycogen and lipids, the glycogen concentration is deficient. Conversely, lipids represent the most abundant energy reservoir of bovine embryos, where lipid droplets-containing triacylglycerols are the main fatty acid stores. Oocytes of many mammalian species contain comparatively high amounts of lipids stored as droplets in the ooplasm. L-carnitine has been described as a cofactor that facilitates the mobilization of fatty acids present in the oocyte's cytoplasm into the mitochondria to facilitate β-oxidation processes. However, the L-carnitine effects by addition to media in the in vitro produced embryos on the quality are highly disputed and contradictory by different researchers. This review's objective was to explore the effect that the addition of L-carnitine on culture media could have on the overall bovine embryo production in vitro, from the oocyte metabolism to the modulation of gene expression in the developing embryos.
Collapse
Affiliation(s)
- Diego F Carrillo-González
- OHVRI Research Group, College of Veterinary Medicine, University of Antioquia, Medellín, Colombia.,Faculty of Agricultural Sciences, School of Zootechny, University of Sucre, Sincelejo, Colombia
| | | | - Juan G Maldonado-Estrada
- OHVRI Research Group, College of Veterinary Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Lipid Metabolism in Bovine Oocytes and Early Embryos under In Vivo, In Vitro, and Stress Conditions. Int J Mol Sci 2021; 22:ijms22073421. [PMID: 33810351 PMCID: PMC8038040 DOI: 10.3390/ijms22073421] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Lipids are a potential reservoir of energy for initial embryonic development before activation of the embryonic genome and are involved in plasma membrane biosynthesis. Excessive lipid droplet formation is detrimental to cryotolerance and is related to alterations in mitochondrial function, which likely affects lipid metabolism. Increased lipid accumulation in in vitro produced embryos is a consequence of the stress during in vitro embryonic development process. There are several open questions concerning embryo lipid metabolism and developmental potential. Oocyte maturation and embryo development in vivo and in vitro may vary if the donors are subjected to any type of stress before follicle puncture because crucial changes in oocyte/embryonic metabolism occur in response to stress. However, little is known about lipid metabolism under additional stress (such as heat stress). Therefore, in this review, we aimed to update the information regarding the energy metabolism of oocytes and early bovine embryos exhibiting developmental competence, focusing on lipid metabolic pathways observed under in vivo, in vitro, and stress conditions.
Collapse
|
7
|
Abdelnour SA, Yang CY, Swelum AA, Abd El-Hack ME, Khafaga AF, Abdo M, Shang JH, Lu YQ. Molecular, functional, and cellular alterations of oocytes and cumulus cells induced by heat stress and shock in animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38472-38490. [PMID: 32767010 DOI: 10.1007/s11356-020-10302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global warming is considered as the main environmental stress affecting ecosystems as well as physiological and biochemical characteristics, and survivability of living organisms. High temperature induces various stresses and causes reduction of fertility through reducing the oocyte developmental competence and alteration in surrounding cells' functions. This causes major economic loss to livestock creating a selective pressure on animals to the advantage of better adapted genotypes and to the detriment of others. In this review, a search in Science Direct, Google Scholar, PubMed, Web of Science, Scopus, and SID databases until 2020 was conducted. Keywords which include heat stress, shock, high temperature, oocyte, cumulus, and animals were investigated. Studies have exhibited that heat stress can disturb the development and function of oocyte and cumulus cells (CCs) concerning reproductive efficiency. Heat stress has deleterious consequences on oocyte maturation and development via reduced number of polar body extrusion, adenosine monophosphate, and guanosine monophosphate synthesis. Heat stress caused the alteration of cytoplasmic and nuclear features as well as trans-zonal projections and gap junctions. In addition, heat stress is accompanied with reduced mitochondrial activity (copy mDNA number, distribution, and membrane potential) in cumulus-oocyte complexes. This review targets the description of results in the most recent studies that aimed to call attention to the influences of heat stress on molecular, functional, and cellular changes in oocytes and CCs in animals to design evidence on the acting mechanisms as the core of this problem from a comparative review.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Chun-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China.
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biol Reprod 2020; 102:784-794. [DOI: 10.1093/biolre/ioaa015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
From the time oocytes leave quiescence, there are constant microenvironmental influences contributing to development, thus acquiring developmental competence is not a simple, linear phenomenon. During folliculogenesis, oocytes experience many morphological and cytological changes that contribute toward the acquisition of developmental competence, a process defined by an oocyte’s ability to progress through folliculogenesis, be fertilized, undergo cleavage, and develop into an embryo. Many factors, such as ovarian follicle size, cow age, and the morphology of the cumulus–oocyte complex, have been extensively investigated to understand this process. In parallel to aiding in the understanding of oocyte biology, these features have been used to characterize an oocyte’s ability to achieve competence. In addition, oocytes undergo intense gene transcription and protein translation to accumulate the maternal stores. When the oocyte is fully grown, most genes are transcriptionally inactive, and the chromatin is densely compacted. More recently, RNA profiling has been used to further define the transcriptional parameters that are associated with oocyte development. Here, focusing on cattle, we provide an overview of the experimental models commonly used to understand the underlying biology related to oocyte developmental competence. We compiled public data and showed that cattle oocytes can express over 15 000 protein-coding genes, suggesting a complex transcriptome landscape. Surprisingly, less than 2% of the expressed genes have been linked to developmental competence. The identification of the gene products that contribute to oocyte development, and understanding their biological function, are a vital component of our quest toward defining oocyte developmental competence at the molecular level.
Collapse
|
9
|
Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology 2020; 145:77-85. [PMID: 32004821 DOI: 10.1016/j.theriogenology.2020.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Developmental competence determines the oocyte capacity to support initial embryo growth, but the molecular mechanisms underlying this phenomenon are still ill-defined. Changes in microRNA (miRNA) expression pattern have been described during follicular growth in several species. Therefore, aim of this study was to investigate whether miRNA expression pattern in cow oocyte and follicular fluid (FF) is associated with the acquisition of developmental competence. Samples were collected from ovaries with more than, or fewer than, 10 mid-antral follicles (H- and L-ovaries) because previous studies demonstrated that this parameter is a reliable predictor of oocyte competence. After miRNA deep sequencing and bioinformatic data analysis, we identified 58 miRNAs in FF and 6 in the oocyte that were differentially expressed between H- and L-ovaries. Overall, our results indicate that miRNA levels both in FF and in the ooplasm must remain within specific thresholds and that changes in either direction compromising oocyte competence. Some of the miRNAs found in FF (miR-769, miR-1343, miR-450a, miR-204, miR-1271 and miR-451) where already known to regulate follicle growth and their expression pattern indicate that they are also involved in the acquisition of developmental competence. Some miRNAs were differentially expressed in both compartments but with opposite patterns, suggesting that miRNAs do not flow freely between FF and oocyte. Gene Ontology analysis showed that the predicted gene targets of most differentially expressed miRNAs are part of a few signalling pathways. Regulation of maternal mRNA storage and mitochondrial activity seem to be the processes more functionally relevant in determining oocyte quality. In conclusion, our data identified a few miRNAs in the follicular fluid and in the ooplasm that modulate the oocyte developmental competence. This provides new insights that could help with the management of cattle reproductive efficiency.
Collapse
|
10
|
Sakaguchi K, Nagano M. Follicle priming by FSH and pre-maturation culture to improve oocyte quality in vivo and in vitro. Theriogenology 2020; 150:122-129. [PMID: 32005509 DOI: 10.1016/j.theriogenology.2020.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/25/2023]
Abstract
Nowadays there is strong demand to produce embryos from premium quality cattle, and we can produce embryos using oocytes collected from living premium animals by ovum-pick up (OPU) followed by in vitro fertilization (IVF). However, the developmental competence of IVF oocytes to form blastocysts is variable. The developmental competence of oocytes depends on the size and stages of follicles, and follicle-stimulating hormone priming (FSH-priming) prior to OPU can promote follicular growth and improve the developmental competence of oocytes. Furthermore, following the induction of ovulation using an injection of luteinizing hormone or gonadotropin-releasing hormone after FSH-priming, we can collect in vivo matured oocytes from ovulatory follicles, which show higher developmental competence than oocytes matured in vitro. However, the conventional protocols for FSH-priming consist of multiple FSH injection for 3-4 days, which is stressful for the animal and labor-intensive for the veterinarian. In addition, these techniques cannot be applied to IVF of oocytes collected from bovine ovaries derived from slaughterhouses, which are important sources of oocytes. Here, we review previous research focused on FSH-priming, especially for collecting in vivo matured oocytes and a simplified method for superstimulation using a single injection of FSH. We also introduce the previous achievements using in vitro pre-maturation culture, which can improve the developmental competence of oocytes derived from non-stimulated animals.
Collapse
Affiliation(s)
- Kenichiro Sakaguchi
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Institute of Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, The Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
11
|
Telfer EE, Sakaguchi K, Clarkson YL, McLaughlin M. In vitro growth of immature bovine follicles and oocytes. Reprod Fertil Dev 2020; 32:1-6. [PMID: 32188553 DOI: 10.1071/rd19270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The limitation in the supply of mature, fertilisable oocytes constitutes a major impediment to increasing the success of assisted reproduction, stem cell derivation and cloning in domestic species. Techniques are being developed to grow immature oocytes invitro that have the potential to increase the supply of oocytes. Mouse oocytes can be cultured from initial stages of development to maturity, and live young have been produced, but for domestic species, such as cows, with long growth periods, invitro systems that allow complete growth of oocytes contained within primordial follicles to maturity is technically challenging and has not yet been achieved. For cows, several culture systems have been developed that support specific developmental stages, but a multistep culture system will be required for complete growth invitro. This review highlights the steps that will be required to achieve the goal of growing oocytes invitro.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Institute of Cell Biology, Genes and Development Group, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Corresponding author.
| | - Kenichiro Sakaguchi
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Institute of Cell Biology, Genes and Development Group, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yvonne L Clarkson
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Institute of Cell Biology, Genes and Development Group, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Marie McLaughlin
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK; and Institute of Cell Biology, Genes and Development Group, The University of Edinburgh, The Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| |
Collapse
|