1
|
Artico M, Roux C, Peruch F, Mingotaud AF, Montanier CY. Grafting of proteins onto polymeric surfaces: A synthesis and characterization challenge. Biotechnol Adv 2023; 64:108106. [PMID: 36738895 DOI: 10.1016/j.biotechadv.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
This review aims at answering the following question: how can a researcher be sure to succeed in grafting a protein onto a polymer surface? Even if protein immobilization on solid supports has been used industrially for a long time, hence enabling natural enzymes to serve as a powerful tool, emergence of new supports such as polymeric surfaces for the development of so-called intelligent materials requires new approaches. In this review, we introduce the challenges in grafting protein on synthetic polymers, mainly because compared to hard surfaces, polymers may be sensitive to various aqueous media, depending on the pH or reductive molecules, or may exhibit state transitions with temperature. Then, the specificity of grafting on synthetic polymers due to difference of chemical functions availability or difference of physical properties are summarized. We present next the various available routes to covalently bond the protein onto the polymeric substrates considering the functional groups coming from the monomers used during polymerization reaction or post-modification of the surfaces. We also focus our review on a major concern of grafting protein, which is avoiding the potential loss of function of the immobilized protein. Meanwhile, this review considers the different methods of characterization used to determine the grafting efficiency but also the behavior of enzymes once grafted. We finally dedicate the last part of this review to industrial application and future prospective, considering the sustainable processes based on green chemistry.
Collapse
Affiliation(s)
- M Artico
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France; TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - C Roux
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France
| | - F Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, France
| | - A-F Mingotaud
- Laboratory IMRCP, CNRS UMR 5623, University Paul Sabatier, Toulouse, France.
| | - C Y Montanier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
2
|
Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem 2023; 67:629-638. [PMID: 36866571 DOI: 10.1042/ebc20220167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Cox N, Charlier C, Vijayaraj R, De La Mare M, Barbe S, André I, Lippens G, Montanier CY. The covalent complex of Jo-In results from a long-lived, non-covalent intermediate state with near-native structure. Biochem Biophys Res Commun 2021; 589:223-228. [PMID: 34929445 DOI: 10.1016/j.bbrc.2021.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Covalent protein complexes have been used to assemble enzymes in large scaffolds for biotechnology purposes. Although the catalytic mechanism of the covalent linking of such proteins is well known, the recognition and overall structural mechanisms driving the association are far less understood but could help further functional engineering of these complexes. Here, we study the Jo-In complex by NMR spectroscopy and molecular modelling. We characterize a transient non-covalent complex, with structural elements close to those in the final covalent complex. Using site specific mutagenesis, we further show that this non-covalent association is essential for the covalent complex to form.
Collapse
Affiliation(s)
- Neil Cox
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Cyril Charlier
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Ramadoss Vijayaraj
- Toulouse White Biotechnology, UMS INRA 1337, UMS CNRS 3582, Institut National des Sciences Appliquées de Toulouse, 31077, Toulouse, France
| | - Marion De La Mare
- Toulouse White Biotechnology, UMS INRA 1337, UMS CNRS 3582, Institut National des Sciences Appliquées de Toulouse, 31077, Toulouse, France
| | - Sophie Barbe
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France.
| | - Cédric Y Montanier
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France.
| |
Collapse
|
5
|
Badruna L, Burlat V, Roblin P, Enjalbert T, Lippens G, Venditto I, O'Donohue MJ, Montanier CY. The Jo-In protein welding system is a relevant tool to create CBM-containing plant cell wall degrading enzymes. N Biotechnol 2021; 65:31-41. [PMID: 34352412 DOI: 10.1016/j.nbt.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Irrespective of their biological origin, most proteins are composed of several elementary domains connected by linkers. These domains are either functionally independent units, or part of larger multidomain structures whose functions are defined by their spatial proximity. Carbohydrate-degrading enzymes provide examples of a range of multidomain structures, in which catalytic protein domains are frequently appended to one or more non-catalytic carbohydrate-binding modules which specifically bind to carbohydrate motifs. While the carbohydrate-binding specificity of these modules is clear, their function is not fully elucidated. Herein, an original approach to tackle the study of carbohydrate-binding modules using the Jo-In biomolecular welding protein pair is presented. To provide a proof of concept, recombinant xylanases appended to two different carbohydrate-binding modules have been created and produced. The data reveal the biochemical properties of four xylanase variants and provide the basis for correlating enzyme activity to structural properties and to the nature of the substrate and the ligand specificity of the appended carbohydrate-binding module. It reveals that specific spatial arrangements favour activity on soluble polymeric substrates and that activity on such substrates does not predict the behaviour of multimodular enzymes on insoluble plant cell wall samples. The results highlight that the Jo-In protein welding system is extremely useful to design multimodular enzyme systems, especially to create rigid conformations that decrease the risk of intermodular interference. Further work on Jo-In will target the introduction of varying degrees of flexibility, providing the means to study this property and the way it may influence multimodular enzyme functions.
Collapse
Affiliation(s)
- Louise Badruna
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 24 chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Thomas Enjalbert
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Immacolata Venditto
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | |
Collapse
|
6
|
Zhang Y, Qi X, Yao S, Gao S, Xu S, Wang H, Liu X, An Y. Construction of novel curdlan-based and Ca 2+-chelated magnetic microspheres (CCMM) for efficient protein purification and oriented immobilization. Enzyme Microb Technol 2021; 148:109802. [PMID: 34116763 DOI: 10.1016/j.enzmictec.2021.109802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
In this study, curdlan-based and calcium ion (Ca2+)-chelated magnetic microspheres (CCMM) were prepared for protein purification and oriented immobilization. Additional purification steps before immobilization were not required. CCMM samples were produced by reverse embedding of Fe3O4 nanoparticles with curdlan and chelated with Ca2+ in the presence of iminodiacetic acid. The β-xylanase XynII from Trichoderma reesei QM6a was used to investigate the efficiency of CCMM preparation. The resulting CCMM-XynII was found to be very stable, showing 82 % and 60 % of initial activities after storage for 35 days and after being assayed ten times, respectively. In addition, the CCMM-XynII showed higher stabilities in the presence of organic solvents and multiple chemicals than the free XynII, suggesting that the CCMM-XynII could be efficient for applications requiring the presence of organic solvents. In addition, CCMM may be more suitable than commercially available Ni-NTA for purification of proteins intolerant of Ni2+.
Collapse
Affiliation(s)
- Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Shuo Yao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Shumin Xu
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Xia Liu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
7
|
Maalej A, Elloumi W, Angelov I, Kardaleva P, Dimitrov V, Chamkha M, Guncheva M, Sayadi S. Pistacia lentiscus by-product as a promising source of phenolic compounds and carotenoids: Purification, biological potential and binding properties. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int J Biol Macromol 2020; 164:3462-3473. [DOI: 10.1016/j.ijbiomac.2020.08.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023]
|
9
|
Enjalbert T, De La Mare M, Roblin P, Badruna L, Vernet T, Dumon C, Montanier CY. Characterisation of the Effect of the Spatial Organisation of Hemicellulases on the Hydrolysis of Plant Biomass Polymer. Int J Mol Sci 2020; 21:ijms21124360. [PMID: 32575393 PMCID: PMC7353053 DOI: 10.3390/ijms21124360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023] Open
Abstract
Synergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers. By using an innovative covalent association process using two protein fragments, Jo and In, we produced two bi-modular chimeric complexes connecting a xylanase and a xylosidase, involved in the deconstruction of xylose-based plant cell wall polymer. We first show that the intrinsic activity of the individual enzymes was preserved. Small Angle X-rays Scattering (SAXS) analysis of the complexes highlighted two different spatial organisations in solution, affecting both the distance between the enzymes (53 Å and 28 Å) and the distance between the catalytic pockets (94 Å and 75 Å). Reducing sugar and HPAEC-PAD analysis revealed different behaviour regarding the hydrolysis of Beechwood xylan. After 24 h of hydrolysis, one complex was able to release a higher amount of reducing sugar compare to the free enzymes (i.e., 15,640 and 14,549 µM of equivalent xylose, respectively). However, more interestingly, the two complexes were able to release variable percentages of xylooligosaccharides compared to the free enzymes. The structure of the complexes revealed some putative steric hindrance, which impacted both enzymatic efficiency and the product profile. This report shows that controlling the spatial geometry between two enzymes would help to better investigate synergism effect within complex multi-enzymatic machinery and control the final product.
Collapse
Affiliation(s)
- Thomas Enjalbert
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Marion De La Mare
- Toulouse White Biotechnology, UMS INRA 1337, UMS CNRS 3582, Institut National des Sciences Appliquées de Toulouse, 31077 Toulouse, France;
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31077 Toulouse, France;
| | - Louise Badruna
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Thierry Vernet
- Institut de Biologie Structurale, Univ., Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France;
| | - Claire Dumon
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
| | - Cédric Y. Montanier
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; (T.E.); (L.B.); (C.D.)
- Correspondence: ; Tel.: +33-(0)5-61-55-97-13
| |
Collapse
|
10
|
Shivudu G, Chandraraj K, Selvam P. Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|