1
|
Li H, Niu L, Wang J, Chang Q, Zhang S, Wang J, Zeng J, Gao M, Ge J. Strategy against super-resistant bacteria: Curdlan-induced trained immunity combined with multi-epitope subunit vaccine. Int J Biol Macromol 2024; 280:135663. [PMID: 39284466 DOI: 10.1016/j.ijbiomac.2024.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is rapidly spreading worldwide, emerging as a leading cause of bacterial infections in healthcare and community settings. This poses serious risks to human health. The shortage of novel antibiotics and the absence of effective vaccines make MRSA particularly challenging to treat. Existing vaccine development strategies often fail to provide early protection against infections, highlighting the urgent need for solutions. Herein, we propose a novel strategy combining trained immunity with a multi-epitope subunit vaccine to combat MRSA infections. We comprehensively evaluated the trained immune phenotypes induced by β-glucan from barley and curdlan. Macrophages trained with curdlan exhibited a more balanced inflammatory response compared to β-glucan from barley, expressing higher levels of IL-1β, IFN-β, TGF-β, and CCL2 upon secondary stimulation. Furthermore, curdlan-induced trained immunity rapidly provided excellent protection against S. aureus infection in mice. RNA-sequencing analysis revealed that curdlan modulates the Wnt signaling pathway in macrophages, resolves inflammation, and promotes tissue repair. When combined with one or two doses of S. aureus multivalent epitope antigen against MRSA infection, curdlan-induced trained immunity enhanced early protection and promoted recovery. Our study demonstrates the feasibility of combining trained immunity with vaccine protection against MRSA, providing a strategy against multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqing Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingru Chang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuhe Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiankai Zeng
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva ES, Silva NR, Rosa FCS, Rosa LP, Costa DJ, Amaral JG, da Silva RAA. Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA). Photochem Photobiol Sci 2023; 22:2877-2890. [PMID: 37923909 DOI: 10.1007/s43630-023-00495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Staphylococcus aureus is the primary cause of skin and soft tissue infections. Its significant adaptability and the development of resistance are the main factors linked to its spread and the challenges in its treatment. Antimicrobial photodynamic therapy emerges as a promising alternative. This work aimed to characterize the antimicrobial photodynamic activity of Brazilian green propolis, along with the key bioactive compounds associated with this activity. Initially, a scanning spectrometry was conducted to assess the wavelengths with the potential to activate green propolis. Subsequently, reference strains of methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300) and vancomycin-intermediate Staphylococcus aureus (VISA ATCC 700699) were exposed to varying concentrations of green propolis: 1 µg/mL, 5 µg/mL, 10 µg/mL, 50 µg /mL and 100 µg/mL and were stimulated by blue, green or red LED light. Finally, high-performance liquid chromatography coupled with a diode array detector and tandem mass spectrometry techniques, along with classic molecular networking analysis, was performed to identify potential bioactive molecules with photodynamic activity. Brazilian green propolis exhibits a pronounced absorption peak and heightened photo-responsiveness when exposed to blue light within the range of 400 nm and 450 nm. This characteristic reveals noteworthy significant photodynamic activity against MRSA and VISA at concentrations from 5 µg/mL. Furthermore, the propolis comprises compounds like curcumin and other flavonoids sourced from flavone, which possess the potential for photodynamic activity and other antimicrobial functions. Consequently, Brazilian green propolis holds promise as an excellent bactericidal agent, displaying a synergistic antibacterial property enhanced by light-induced photodynamic effects.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, 45.988-058, Teixeira de Freitas, Bahia, Brasil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Emely Soares Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Francine Cristina Silva Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Luciano Pereira Rosa
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43-Lot, Alto da Boa Vista, CEP: 45029-066, Vitória da Conquista, Bahia, Brasil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira-Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, CEP: 45.029-094, Vitória da Conquista, Bahia, Brasil.
| |
Collapse
|
3
|
Han X, Ortines R, Mukherjee I, Kanipakala T, Kort T, Sherchand SP, Liao G, Mednikov M, Chenine AL, Aman MJ, Nykiforuk CL, Adhikari RP. Hyperimmune Targeting Staphylococcal Toxins Effectively Protect Against USA 300 MRSA Infection in Mouse Bacteremia and Pneumonia Models. Front Immunol 2022; 13:893921. [PMID: 35655774 PMCID: PMC9152286 DOI: 10.3389/fimmu.2022.893921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.
Collapse
Affiliation(s)
- Xiaobing Han
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Roger Ortines
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Ipsita Mukherjee
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Thomas Kort
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Grant Liao
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Agnes L Chenine
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - M Javad Aman
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Cory L Nykiforuk
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada
| | - Rajan P Adhikari
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| |
Collapse
|
4
|
Different Antimicrobial Susceptibility Testing Methods to Determine Vancomycin Susceptibility and MIC for Staphylococcus aureus with Reduced Vancomycin Susceptibility. Diagnostics (Basel) 2022; 12:diagnostics12040845. [PMID: 35453893 PMCID: PMC9032043 DOI: 10.3390/diagnostics12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
The methods and results obtained using commercialized automation systems used for antimicrobial susceptibility testing are not entirely consistent. Therefore, we evaluated different antimicrobial susceptibility testing methods to determine vancomycin susceptibility and minimum inhibitory concentration (MIC) for Staphylococcus aureus with reduced vancomycin susceptibility (SA-RVS). A total of 128 clinical isolates of S. aureus were tested, including 99 isolates showing an MIC of ≥2 µg/mL using the VITEK2 system (VITEK2). Antimicrobial susceptibility tests were performed using the Sensititre system (Sensititre), Phoenix M50 system (Phoenix), and MicroScan WalkAway 96 Plus system (MicroScan). Vancomycin MICs were determined using the broth microdilution method (BMD) and Etest. Essential agreement and category agreement for each method were compared with BMD results as the reference method. The BMD and Etest showed complete essential agreement (100%). VITEK2, Sensititre, and Phoenix showed high essential agreement (>99%), while MicroScan showed the lowest essential agreement (92.2%). The MIC MICs determined via Etest, VITEK2, and MicroScan tended to be higher than that determined via BMD. When comparing BMD with Etest, the category agreement was 93.8% and minor errors were observed for eight isolates. VITEK2, Sensititre, and Phoenix showed category agreements of 96.1%, 96.1%, and 99.2%, respectively, while MicroScan showed the lowest category agreement of 85.2%. The determination of vancomycin susceptibility and MIC for S. aureus varied among the methods. Caution should be taken when interpreting RVS and intermediate results for S. aureus. For confirmation of SA-RVS results, it would be appropriate to test with BMD or a more reliable testing method.
Collapse
|
5
|
In Vitro Antibacterial Experiments of Qixingjian Decoction and Its Synergistic Interaction with Oxacillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1488141. [PMID: 35222666 PMCID: PMC8865976 DOI: 10.1155/2022/1488141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Background With the widespread use and abuse of antimicrobial drugs, the problem of bacterial resistance is becoming increasingly prominent. The clinical detection rate of drug-resistant bacteria is increasing year by year, so there is an urgent need to develop new antimicrobial drugs. Qixingjian Decoction (QXJT) is a formula commonly used in Chinese medicine for the treatment of sepsis caused by acute purulent infections of the face, hands, and feet. There are many compounds with antimicrobial effects that are available, but little is known about their mode of action. In this study, we mainly evaluated the antimicrobial activity of QXJT and explored its synergistic interaction with oxacillin (OX) and the mechanism of its antimicrobial activity. Methods The antimicrobial activity of QXJT against methicillin-resistant Staphylococcus aureus (MRSA) was determined by the microdilution method, the broth macrodilution method, and the time-kill curve method. The main compounds in QXJT were analyzed by ultra-performance liquid chromatography. The synergistic interaction of QXJT and oxacillin (OX) was determined by checkerboard assay, and the antimicrobial mechanism of QXJT, OX, and QXJT + OX was evaluated by transmission electron microscopy (TEM) technique. The expression of MRSA superantigen virulence factors (sea, seb, and tst), and drug resistance gene (mecA) was detected to provide a new strategy for new antibiotic drugs. Results QXJT exhibited antimicrobial activity against both clinical isolates of MRSA, MICs ranging from 18.75 to 37.5 mg/mL. Active substances such as Scutellarein, Scutellarin, Apigenin, and Wogonin 7-O-glucuronide were detected in the phytochemical analysis that may be associated with the antimicrobial activity of QXJT. The synergistic effect of QXJT and OX was determined by checkerboard assay (FICI = 0.5), and TEM images showed that QXJT could cause the disruption of MRSA cell wall, and QXJT + OX could produce greater disruption of MRSA cell wall, elucidating the synergistic effect of the two together on cell wall disruption by microscopic mechanisms. Our study shows that the combination of QXJT and OX can inhibit the expression of MRSA virulence factor, reduce the virulence of MRSA, and have no significant effect on the expression of MRSA resistance gene mecA. Conclusion The results of this study provide scientific experimental data for the traditional application of QXJT and initially explore the mechanism of action of QXJT combined with OX.
Collapse
|
6
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
7
|
Kim MH, Kim YC, Kim H, Lee HM, Lee JH, Kim DA, Kim C, Park JY, Park YS. Lessons Learned from an Experience with Vancomycin-Intermediate Staphylococcus aureus Outbreak in a Newly Built Secondary Hospital in Korea. Pathogens 2021; 10:pathogens10050564. [PMID: 34066625 PMCID: PMC8148553 DOI: 10.3390/pathogens10050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
A vancomycin-intermediate Staphylococcus aureus (VISA) outbreak occurred in an intensive care unit (ICU) in South Korea. We aimed to investigate the condition that led to the VISA outbreak and seek measures to prevent further spread of the multidrug-resistant organism. A total of three VISA isolates were obtained from two patients and a health care worker (HCW) in a newly built 450-bed secondary hospital. Extensive screening of close contacts for VISA in terms of space sharing and physical contact, irrespective of contact time, was performed. Furthermore, multilocus sequence type, staphylococcal cassette chromosome mec type, and spa type profiles were determined for all VISA isolates. The relationship between vancomycin use and the minimum inhibitory concentration (MIC) of S. aureus was also investigated. Molecular typing showed that the strains of the three VISA isolates were identical, indicating horizontal hospital transmission. We assumed that VISA colonised in the HCW could have transmitted to the two patients, which resulted in one infection and one colonisation. The affected HCW was excused from work and was decolonised with mupirocin. Five weeks after the interventions, no additional VISA isolates were identified. No relationship between vancomycin use and MIC of S. aureus was identified. Extensive screening of contacts in addition to decolonisation is crucial in preventing the further spread of VISA.
Collapse
Affiliation(s)
- Min Hyung Kim
- Department of Internal Medicine, Division of Infectious Disease, Bundang Jesaeng Hospital, Seongam, Gyeonggi 13590, Korea;
| | - Yong Chan Kim
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
| | - Heejung Kim
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
| | - Hyuk Min Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ju Hyun Lee
- Infection Control Office, Yongin Severance Hospital, Yongin-si 16995, Korea; (J.H.L.); (D.A.K.)
| | - Da Ae Kim
- Infection Control Office, Yongin Severance Hospital, Yongin-si 16995, Korea; (J.H.L.); (D.A.K.)
| | - Chanhee Kim
- Division of Disease Control Policy, Bureau of Health, Gyeonggi Provincial Office, Gyeonggi 13494, Korea;
| | - Jin Young Park
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
| | - Yoon Soo Park
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin-si 16995, Korea;
- Correspondence: ; Tel.: +82-31-5189-8761
| |
Collapse
|
8
|
Safety and Efficacy of Daptomycin in Neonates with Coagulase-Negative Staphylococci: Case Series Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020168. [PMID: 33562197 PMCID: PMC7915314 DOI: 10.3390/antibiotics10020168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
There has been an increase in the prevalence of gram-positive bacteremia in neonates in the last two decades. However, as a consequence of better care, there has been an increase in the survival of premature neonates. Coagulase-negative staphylococci (CoNS) is the most prevalent bacteria, responsible for up to 60% of late-onset sepsis (LOS). Daptomycin, a lipopeptide antimicrobial agent, is active against CoNS. This was an observational, retrospective case series study carried out in the Pediatric Hospital of King Saud Medical City, Riyadh, Saudi Arabia. The medical records of 21 neonates, aged 0-28 days, who were treated in Neonatal Intensive Care Unit (NICU) with intravenous daptomycin as monotherapy or combination therapy for at least 4 days for proven gram-positive infection between June 2019 to July 2020, were included. The median gestational and chronological age were 27 weeks and 5 days, respectively. The most frequent diagnosis in neonates was infective endocarditis (42.9%). Of the 21 patients who received daptomycin therapy, 13 (62%) recovered and 8 died. The clinical cure rate was higher in Staphylococcus hominis (100%) and in patients who received 6 mg/kg/dose twice daily (62.5%). The mean of aspartate aminotransferase significantly elevated after starting daptomycin (p = 0.048). However, no muscular or neurological toxicity of daptomycin was documented in any of the cases. Overall, daptomycin was well tolerated, even with long-term treatment.
Collapse
|
9
|
Zaki M, Galeb S, Eid AR, Ahmed D, Mabrouk A, Latif RA. Molecular characterization of Staphylococcus aureus isolated from hospital acquired sepsis in pediatrics, relation to antibiotics, resistance and virulence genes. Germs 2020; 10:295-302. [PMID: 33489944 DOI: 10.18683/germs.2020.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 01/04/2023]
Abstract
Introduction The objective of this study was to determine the prevalence of antibiotic resistance genes mecA, vanA, B, C and virulence genes Panton-Valentine Leucocidin (PVL) and fibronectin-binding protein (fnBPA) among S. aureus isolates from hospital-acquired sepsis from pediatric intensive care units. Methods The study was a retrospective cross-sectional study, including 250 unique isolates of S. aureus obtained from pediatric patients with hospital-acquired sepsis. The isolates were subjected to study of antibiotic susceptibility by disc diffusion method and molecular analysis of antibiotic resistance genes and certain virulence genes (PVL and fnBPA genes). Results Methicillin resistant S. aureus represented 178 (71%) of the isolated S. aureus and reduced susceptibility to vancomycin was detected by minimum inhibitory concentration in 39 (22%) isolates. It was found that there was a strong association between the MRSA strains and resistance to some antibiotics, devices association (p<0.001) and patient outcomes (p=0.003). There was a significant association between reduced vancomycin susceptibility (p=0.010), the presence of a central line catheter (p=0.000) and fnBPA gene (p<0.001) and mortality rate. Conclusions The present study highlights that major S. aureus strains isolated from sepsis in pediatric patients were methicillin resistant with a substantial proportion of reduced susceptibility to vancomycin. Although none of the isolates had van genes responsible for vancomycin resistance, this finding warrants a considerable attention for study as it was a risk factor for mortality in those patients. The virulence genes fibronectin-binding protein and Panton-Valentine Leucocidin were not uncommon in S. aureus.
Collapse
Affiliation(s)
- Maysaa Zaki
- MD, Department of Clinical Pathology, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Sara Galeb
- MD, Department of Clinical Pathology, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Abdel-Rahman Eid
- MD, Department of Genetic Unit Pediatric Department, Genetics unit, Mansoura Faculty of Medicine, El Gomhoria Street, Mansoura, Egypt
| | - Doaa Ahmed
- MD, Department of Medical Microbiology and Immunology, Faculty of Medicine, Beni-Suef University, Mohamed Hassan Street, Beni-Suef, Egypt
| | - Amna Mabrouk
- MD, Department of Pediatric Medicine, Faculty of Medicine, Beni-Suef University, Mohamed Hassan Street, Beni-Suef, Egypt
| | - Radwa Abdel Latif
- MD, Department of Clinical Pathology, Faculty of Medicine, Beni-Suef University- Mohamed Hassan Street, Beni-Suef, Egypt
| |
Collapse
|
10
|
Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA-Salvaging the Gold Standards with Combination Therapy. Antibiotics (Basel) 2020; 9:E762. [PMID: 33143290 PMCID: PMC7692208 DOI: 10.3390/antibiotics9110762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with substantial morbidity and mortality. Vancomycin (VAN) has been used as the gold standard treatment for invasive MRSA infections for decades but, unfortunately, the reliance of VAN as the primary treatment option against these infections has led to a reduction in VAN susceptibility in MRSA isolates. Although daptomycin (DAP) is another common treatment option against invasive MRSA infections, it has been shown that the development of VAN resistance can lead to DAP nonsusceptibility. VAN or DAP backbone regimens in combination with other antibiotics has been advocated as an alternative approach to improve patient outcomes in VAN/DAP-susceptible infections, enhance outcomes in infections caused by isolates with reduced VAN/DAP susceptibility, and/or prevent the emergence of VAN/DAP resistance or further resistance. A peer-reviewed literature search was conducted using Medline, Google Scholar and PubMed databases. The primary purpose of this review is to describe the mechanisms and epidemiology of MRSA isolates with a reduction in VAN and/or DAP susceptibility, evaluate in vitro and in vivo literature describing combination therapy (CT) against MRSA isolates with reduced VAN and/or DAP susceptibility and describe studies involving the clinical outcomes of patients treated with CT against invasive MRSA infections.
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (T.M.); (S.A.); (J.C.A.-M.); (R.K.)
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacy, Detroit Receiving Hospital, Detroit, MI 48201, USA
| |
Collapse
|
11
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|