1
|
Portilla Llerena JP, Kiyota E, dos Santos FRC, Garcia JC, de Lima RF, Mayer JLS, dos Santos Brito M, Mazzafera P, Creste S, Nobile PM. ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves. GM CROPS & FOOD 2024; 15:67-84. [PMID: 38507337 PMCID: PMC10956634 DOI: 10.1080/21645698.2024.2325181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Julio C. Garcia
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
| | | | | | - Michael dos Santos Brito
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
2
|
Gallinari RH, Lyczakowski JJ, Llerena JPP, Mayer JLS, Rabelo SC, Menossi Teixeira M, Dupree P, Araujo P. Silencing ScGUX2 reduces xylan glucuronidation and improves biomass saccharification in sugarcane. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:587-601. [PMID: 38146142 PMCID: PMC10893953 DOI: 10.1111/pbi.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 12/27/2023]
Abstract
There is an increasing need for renewable energy sources to replace part of our fossil fuel-based economy and reduce greenhouse gas emission. Sugarcane bagasse is a prominent feedstock to produce cellulosic bioethanol, but strategies are still needed to improve the cost-effective exploitation of this potential energy source. In model plants, it has been shown that GUX genes are involved in cell wall hemicellulose decoration, adding glucuronic acid substitutions on the xylan backbone. Mutation of GUX genes increases enzyme access to cell wall polysaccharides, reducing biomass recalcitrance in Arabidopsis thaliana. Here, we characterized the sugarcane GUX genes and silenced GUX2 in commercial hybrid sugarcane. The transgenic lines had no penalty in development under greenhouse conditions. The sugarcane GUX1 and GUX2 enzymes generated different patterns of xylan glucuronidation, suggesting they may differently influence the molecular interaction of xylan with cellulose and lignin. Studies using biomass without chemical or steam pretreatment showed that the cell wall polysaccharides, particularly xylan, were less recalcitrant in sugarcane with GUX2 silenced than in WT plants. Our findings suggest that manipulation of GUX in sugarcane can reduce the costs of second-generation ethanol production and enhance the contribution of biofuels to lowering the emission of greenhouse gases.
Collapse
Affiliation(s)
- Rafael Henrique Gallinari
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of BiologyUniversity of Campinas—UNICAMPSão PauloBrazil
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jan J. Lyczakowski
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Juan Pablo Portilla Llerena
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of BiologyUniversity of Campinas—UNICAMPSão PauloBrazil
- Department of Plant Biology, Institute of BiologyUniversity of Campinas—UNICAMPSão PauloBrazil
| | | | - Sarita Cândida Rabelo
- Department of Bioprocess and Biotechnology, School of AgricultureSão Paulo State University—UNESPBotucatuBrazil
| | - Marcelo Menossi Teixeira
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of BiologyUniversity of Campinas—UNICAMPSão PauloBrazil
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Pedro Araujo
- Department of Genetic, Evolution, Microbiology and Immunology, Institute of BiologyUniversity of Campinas—UNICAMPSão PauloBrazil
| |
Collapse
|
3
|
Manimekalai R, Selvi A, Narayanan J, Vannish R, Shalini R, Gayathri S, Rabisha VP. Comparative physiological and transcriptome analysis in cultivated and wild sugarcane species in response to hydrogen peroxide-induced oxidative stress. BMC Genomics 2023; 24:155. [PMID: 36973642 PMCID: PMC10045617 DOI: 10.1186/s12864-023-09218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Sugarcane is an important energy crop grown worldwide,supplementing various renewable energy sources. Cultivated and wild sugarcane species respond differently to biotic and abiotic stresses. Generally, wild species are tolerant to various abiotic stresses. In the present study, the physiological and molecular responses of cultivated and wild sugarcane species to oxidative stress at the transcriptional levels were compared. Transcriptional responses were determined using RNAseq. The representative RNA-seq transcript values were validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and confirmed through physiological responses. RESULTS Oxidative stress causes leaf-rolling and -tip drying in cultivated sugarcane, but the wild species are tolerant. Higher chlorophyll fluorescence was observed in the wild species than that in the cultivated varieties under stress. Wild species can maintain a higher chlorophyll stability index than the cultivated species, which was confirmed by the lower transcripts of the chlorophyllase gene in the wild species than that in the cultivated variety. Transcription factor genes (NAC, MYB, and WRKY) were markedly expressed in response to oxidative stress, revealing their involvement in stress tolerance. The analysis revealed synchronized expression of acetyl-transferase, histone2A, cellulose synthase, and secondary cell wall biosynthetic genes in the wild species. The validation of selected genes and 15 NAC transcription factors using RT-qPCR revealed that their expression profiles were strongly correlated with RNA-seq. To the best of our knowledge, this is the first report on the oxidative stress response in cultivated and wild sugarcane species. CONCLUSION Physiological and biochemical changes in response to oxidative stress markedly differ between cultivated and wild sugarcane species. The differentially expressed stress-responsive genes are grouped intothe response to oxidative stress, heme-binding, peroxidase activity, and metal ion binding categories. Chlorophyll maintenance is a stress tolerance response enhanced by the differential regulation of the chlorophyllase gene.There is a considerable difference in the chlorophyll stability index between wild and cultivated varieties. We observed a substantial regulation of secondary wall biosynthesis genes in the wild species compared with that in the cultivated variety, suggesting differences in stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Manimekalai
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India.
| | - A Selvi
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Jini Narayanan
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Ram Vannish
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - R Shalini
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - S Gayathri
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - V P Rabisha
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| |
Collapse
|
4
|
Llerena JPP, Figueiredo R, Ferreira SS, Cesarino I, Mazzafera P. Isolation of Promoters and Transcription Factors Involved in the Regulation of Lignin Biosynthesis in Saccharum Species. Methods Mol Biol 2022; 2469:103-118. [PMID: 35508833 DOI: 10.1007/978-1-0716-2185-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugarcane bagasse has received attention as a raw material for the production of second-generation ethanol (E2G). However, its use is limited because of the cell wall recalcitrance, mostly conferred by lignin. Recently our knowledge of the genes coding for the enzymes of the lignin biosynthesis pathway has increased; however, still little is known about the transcription factors controlling the expression of these genes in sugarcane. Here we describe protocols to optimize the isolation of the promoters of the lignin biosynthetic genes ShCAD8, ShCOMT and ShF5H and the transcription factors (TFs) ShMYB85 and ShMYB58/63 in Saccharum species. To confirm whether these TFs are able to activate the target promoters, a transactivation assay in BY2 protoplasts of Nicotiana tabacum is also detailed.
Collapse
Affiliation(s)
| | - Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Biology, Faculty of Sciences and LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sávio Siqueira Ferreira
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
5
|
Figueiredo R, Llerena JPP, Cardeli BR, Mazzafera P. Visualization of Suberization and Lignification in Sugarcane. Methods Mol Biol 2022; 2469:89-102. [PMID: 35508832 DOI: 10.1007/978-1-0716-2185-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell wall biopolymers are major factors responsible for the high recalcitrance of sugarcane biomass. The study of suberization and lignification mechanisms in sugarcane and of the networks that control biosynthesis of these polymers will contribute to the biotechnological improvement of this crop. Here, we describe experiments that allow the visualization of the suberization and lignification mechanism in response to mechanical injury in sugarcane.
Collapse
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Biology, Faculty of Sciences and LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | | | - Bárbara Rocha Cardeli
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of Sao Paulo, Piracicaba, Brazil.
| |
Collapse
|
6
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
7
|
Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Funct Integr Genomics 2021; 21:73-99. [PMID: 33404914 DOI: 10.1007/s10142-020-00762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.
Collapse
|
8
|
Simões MS, Ferreira SS, Grandis A, Rencoret J, Persson S, Floh EIS, Ferraz A, del Río JC, Buckeridge MS, Cesarino I. Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. FRONTIERS IN PLANT SCIENCE 2020; 11:617020. [PMID: 33469464 PMCID: PMC7814504 DOI: 10.3389/fpls.2020.617020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/01/2020] [Indexed: 05/06/2023]
Abstract
Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks. Here, we establish a xylogenic culture as a model system to study SCW deposition in sugarcane; the first of its kind in a C4 grass species. We used auxin and brassinolide to differentiate sugarcane suspension cells into tracheary elements, which showed metaxylem-like reticulate or pitted SCW patterning. The differentiation led to increased lignin levels, mainly caused by S-lignin units, and a rise in p-coumarate, leading to increased p-coumarate:ferulate ratios. RNAseq analysis revealed massive transcriptional reprogramming during differentiation, with upregulation of genes associated with cell wall biogenesis and phenylpropanoid metabolism and downregulation of genes related to cell division and primary metabolism. To better understand the differentiation process, we constructed regulatory networks of transcription factors and SCW-related genes based on co-expression analyses. Accordingly, we found multiple regulatory modules that may underpin SCW deposition in sugarcane. Our results provide important insights and resources to identify biotechnological strategies for sugarcane biomass optimization.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Grandis
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - André Ferraz
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Marcos Silveira Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, São Paulo, Brazil
| |
Collapse
|
9
|
Figueiredo R, Portilla Llerena JP, Kiyota E, Ferreira SS, Cardeli BR, de Souza SCR, Dos Santos Brito M, Sodek L, Cesarino I, Mazzafera P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2020; 104:411-427. [PMID: 32813231 DOI: 10.1007/s11103-020-01048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE A sugarcane MYB present in the culm induces suberin biosynthesis and is involved both with fatty acid and phenolics metabolism. Few transcription factors have been described as regulators of cell wall polymers deposition in C4 grasses. Particularly, regulation of suberin biosynthesis in this group of plants remains poorly understood. Here, we showed that the sugarcane MYB transcription factor ShMYB78 is an activator of suberin biosynthesis and deposition. ShMYB78 was identified upon screening genes whose expression was upregulated in sugarcane internodes undergoing suberization during culm development or triggered by wounding. Agrobacterium-mediated transient expression of ShMYB78 in Nicotiana benthamiana leaves induced the ectopic deposition of suberin and its aliphatic and aromatic monomers. Further, the expression of suberin-related genes was induced by ShMYB78 heterologous expression in Nicotiana benthamiana leaves. ShMYB78 was shown to be a nuclear protein based on its presence in sugarcane internode nuclear protein extracts, and protoplast transactivation assays demonstrated that ShMYB78 activates the promoters of the sugarcane suberin biosynthetic genes β-ketoacyl-CoA synthase (ShKCS20) and caffeic acid-O-methyltransferase (ShCOMT). Our results suggest that ShMYB78 may be involved in the transcriptional regulation of suberin deposition, from fatty acid metabolism to phenylpropanoid biosynthesis, in sugarcane internodes.
Collapse
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil.
- Department of Biology, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sávio Siqueira Ferreira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Bárbara Rocha Cardeli
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sarah Caroline Ribeiro de Souza
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Botany, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Michael Dos Santos Brito
- Institute of Science and Technology, Federal University of São Paulo, Campus São José dos Campos, São José dos Campos, 12231-280, Brazil
| | - Ladaslav Sodek
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| |
Collapse
|
10
|
Medeiros C, Balsalobre TWA, Carneiro MS. Molecular diversity and genetic structure of Saccharum complex accessions. PLoS One 2020; 15:e0233211. [PMID: 32442233 PMCID: PMC7244124 DOI: 10.1371/journal.pone.0233211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Sugarcane is an important crop for food and energy security, providing sucrose and bioethanol from sugar content and bioelectricity from lignocellulosic bagasse. In order to evaluate the diversity and genetic structure of the Brazilian Panel of Sugarcane Genotypes (BPSG), a core collection composed by 254 accessions of the Saccharum complex, eight TRAP markers anchored in sucrose and lignin metabolism genes were evaluated. A total of 584 polymorphic fragments were identified and used to investigate the genetic structure of BPSG through analysis of molecular variance (AMOVA), principal components analysis (PCA), a Bayesian method using STRUCTURE software, genetic dissimilarity and phylogenetic tree. AMOVA showed a moderate genetic differentiation between ancestors and improved accessions, 0.14, and the molecular variance was higher within populations than among populations, with values of 86%, 95% and 97% when constrasting improved with ancestors, foreign with ancestors and improved with foreign, respectively. The PCA approach suggests clustering in according with evolutionary and Brazilian breeding sugarcane history, since improved accessions from older generations were positioned closer to ancestors than improved accessions from recent generations. This result was also confirmed by STRUCTURE analysis and phylogenetic tree. The Bayesian method was able to separate ancestors of the improved accessions while the phylogenetic tree showed clusters considering the family relatedness within three major clades; the first being composed mainly by ancestors and the other two mainly by improved accessions. This work can contribute to better management of the crosses considering functional regions of the sugarcane genome.
Collapse
Affiliation(s)
- Carolina Medeiros
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| | - Thiago Willian Almeida Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, São Paulo, Brasil
| |
Collapse
|
11
|
Muhammad A, Khunrae P, Sutthibutpong T. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques. J Mol Model 2020; 26:124. [DOI: 10.1007/s00894-020-04383-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
12
|
Jardim-Messeder D, da Franca Silva T, Fonseca JP, Junior JN, Barzilai L, Felix-Cordeiro T, Pereira JC, Rodrigues-Ferreira C, Bastos I, da Silva TC, de Abreu Waldow V, Cassol D, Pereira W, Flausino B, Carniel A, Faria J, Moraes T, Cruz FP, Loh R, Van Montagu M, Loureiro ME, de Souza SR, Mangeon A, Sachetto-Martins G. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes. Mol Genet Genomics 2020; 295:717-739. [PMID: 32124034 DOI: 10.1007/s00438-020-01653-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/29/2022]
Abstract
The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil
| | - Jose Pedro Fonseca
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nicomedes Junior
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Lucia Barzilai
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix-Cordeiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Rodrigues-Ferreira
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Bastos
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tereza Cristina da Silva
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius de Abreu Waldow
- Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Daniela Cassol
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Willian Pereira
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Bruno Flausino
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Carniel
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguez de Mello, Gerência de Biotecnologia, CENPES, Petrobras, Rio de Janeiro, Brazil
| | - Jessica Faria
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Moraes
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda P Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Loh
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc Van Montagu
- Institute of Plant Biotechnology Outreach, Gent University, Technologiepark 3, Zwijnaarde, 9052, Gent, Belgium
| | - Marcelo Ehlers Loureiro
- Laboratório de Fisiologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sonia Regina de Souza
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|