1
|
Liu W, Shao H, Qi D, Huang X, Chen J, Zhou L, Guo K. The New Nematicide Cyclobutrifluram Targets the Mitochondrial Succinate Dehydrogenase Complex in Bursaphelenchus xylophilus. Int J Mol Sci 2024; 25:6914. [PMID: 39000026 PMCID: PMC11241274 DOI: 10.3390/ijms25136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Bursaphelenchus xylophilus is a dangerous quarantine pest that causes extensive damage to pine ecosystems worldwide. Cyclobutrifluram, a succinate dehydrogenase inhibitor (SDHI), is a novel nematicide introduced by Syngenta in 2013. However, the nematocidal effect of cyclobutrifluram against plant-parasitic nematodes remains underexplored. Therefore, here, we aim to address this knowledge gap by evaluating the toxicity, effects, and mode of action of cyclobutrifluram on B. xylophilus. The result shows that cyclobutrifluram is the most effective agent, with an LC50 value of 0.1078 mg·L-1. At an LC20 dose, it significantly reduced the population size to 10.40 × 103 ± 737.56-approximately 1/23 that of the control group. This notable impact may stem from the agent's ability to diminish egg-laying and hatching rates, as well as to impede the nematodes' development. In addition, it has also performed well in the prevention of pine wilt disease, significantly reducing the incidence in greenhouses and in the field. SDH consists of a transmembrane assembly composed of four protein subunits (SDHA to SDHD). Four sdh genes were characterized and proved by RNAi to regulate the spawning capacity, locomotion ability, and body size of B. xylophilus. The mortality of nematodes treated with sdhc-dsRNA significantly decreased upon cyclobutrifluram application. Molecular docking further confirmed that SDHC, a cytochrome-binding protein, is the target. In conclusion, cyclobutrifluram has a good potential for trunk injection against B. xylophilus. This study provides valuable information for the screening and application of effective agents in controlling and preventing PWD in forests.
Collapse
Affiliation(s)
- Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Danni Qi
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaofang Huang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lifeng Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kai Guo
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Wang S, Chen Q, Wang F. Differences of Pine Wood Nematode ( Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress. BIOLOGY 2024; 13:123. [PMID: 38392341 PMCID: PMC10886877 DOI: 10.3390/biology13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Under ion imbalance, water deficiency, and salt stress, the osmotic pressure of the tree sap increases, and pine wood nematodes (Bursaphelenchus xylophilus, PWN) parasitizing in the trees may be subjected to high-osmotic-pressure stress. KCl, L-malic acid, sucrose, and glycerol solutions were used as osmolytes to explore the highest osmotic concentration that PWN can tolerate. Survival analysis showed that when the treatment concentration exceeded 90%, only a few nematodes in the glycerol group survived under 6 h treatment, and most of the survivors were third-stage dispersal juveniles (DJ3). Further examination revealed that under different concentrations of glycerol-induced high osmotic pressure, the survival rate and body length change rate were the highest in the DJ3 and the lowest in the second-stage propagative juveniles. In order to explore the molecular mechanism of resistance of DJ3 to high osmotic stress, transcriptome sequencing was performed at each developmental stage of PWN and differentially expressed genes that were up-regulated or down-regulated only in DJ3 were screened. The expression of genes related to CoA in DJ3, a key enzyme in metabolism, was significantly higher than the other developmental stages. In addition, the expression of the anti-reversal signal pathway-related gene AKT-1 in DJ3 was significantly lower than in the other development stages. Therefore, the specific expression of genes in DJ3 under high osmotic pressure may help them rapidly produce and accumulate energy-related compounds and activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to respond to damage caused by high-osmotic-pressure stress in time, thus promoting survival.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Qiaoli Chen
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
4
|
Mendonça M, Vicente CSL, Espada M. Functional Characterization of ShK Domain-Containing Protein in the Plant-Parasitic Nematode Bursaphelenchus xylophilus. PLANTS (BASEL, SWITZERLAND) 2024; 13:404. [PMID: 38337937 PMCID: PMC10857297 DOI: 10.3390/plants13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
ShK domain-containing proteins are peptides found in different parasitic and venomous organisms. From a previous transcriptomic dataset from Bursaphelenchus xylophilus, a plant-parasitic nematode that infects forest tree species, we identified 96 transcripts potentially as ShK domain-containing proteins with unknown function in the nematode genome. This study aimed to characterize and explore the functional role of genes encoding ShK domain-containing proteins in B. xylophilus biology. We selected and functionally analyzed nine candidate genes that are putatively specific to B. xylophilus. In situ hybridization revealed expression of one B. xylophilus ShK in the pharyngeal gland cells, suggesting their delivery into host cells. Most of the transcripts are highly expressed during infection and showed a significant upregulation in response to peroxide products compared to the nematode catalase enzymes. We reported, for the first time, the potential involvement of ShK domain genes in oxidative stress, suggesting that these proteins may have an important role in protecting or modulating the reactive oxygen species (ROS) activity of the host plant during parasitism.
Collapse
Affiliation(s)
| | | | - Margarida Espada
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies, and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.M.); (C.S.L.V.)
| |
Collapse
|
5
|
Al-Jawabreh R, Lastik D, McKenzie D, Reynolds K, Suleiman M, Mousley A, Atkinson L, Hunt V. Advancing Strongyloides omics data: bridging the gap with Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220437. [PMID: 38008117 PMCID: PMC10676819 DOI: 10.1098/rstb.2022.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 11/28/2023] Open
Abstract
Among nematodes, the free-living model organism Caenorhabditis elegans boasts the most advanced portfolio of high-quality omics data. The resources available for parasitic nematodes, including Strongyloides spp., however, are lagging behind. While C. elegans remains the most tractable nematode and has significantly advanced our understanding of many facets of nematode biology, C. elegans is not suitable as a surrogate system for the study of parasitism and it is important that we improve the omics resources available for parasitic nematode species. Here, we review the omics data available for Strongyloides spp. and compare the available resources to those for C. elegans and other parasitic nematodes. The advancements in C. elegans omics offer a blueprint for improving omics-led research in Strongyloides. We suggest areas of priority for future research that will pave the way for expansions in omics resources and technologies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Reem Al-Jawabreh
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Dominika Lastik
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Kieran Reynolds
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Mona Suleiman
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Vicky Hunt
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
6
|
Hu LJ, Wu XQ, Wen TY, Ye JR, Qiu YJ, Rui L, Zhang Y. The key molecular pattern BxCDP1 of Bursaphelenchus xylophilus induces plant immunity and enhances plant defense response via two small peptide regions. FRONTIERS IN PLANT SCIENCE 2022; 13:937473. [PMID: 35991456 PMCID: PMC9382027 DOI: 10.3389/fpls.2022.937473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the pathogen of the pine wilt disease (PWD), causing serious damage to pine forests in China. During the process of plant resistance to multiple pathogens, plant immunity plays a key role. In this current study, the pathogen-associated molecular pattern (PAMP) BxCDP1 in B. xylophilus has been identified, but the host target protein of BxCDP1 and its key amino acid region inducing the plant immunity have yet to be elucidated. We found that BxCDP1 could trigger superoxide production, H2O2 production, and callose deposits. A RING-H2 finger protein 1 (RHF1) of Pinus thunbergii was screened and characterized as a target protein of BxCDP1 by yeast two-hybrid and co-immunoprecipitation (Co-IP). Moreover, two peptides (namely M9 and M16) proved to be key regions of BxCDP1 to induce PAMP-triggered immunity (PTI) in Nicotiana benthamiana, which also induced the expression of pathogenesis-related (PR) genes (PtPR-3, PtPR-4, and PtPR-5) in P. thunbergii and enhanced the resistance of the host to B. xylophilus. These results indicate that BxCDP1 plays a critical role in the interaction between B. xylophilus and P. thunbergii, and both peptides M9 and M16 have the potential to be developed and utilized as immune inducers of pines against B. xylophilus in future.
Collapse
Affiliation(s)
- Long-Jiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Possible stochastic sex determination in Bursaphelenchus nematodes. Nat Commun 2022; 13:2574. [PMID: 35546147 PMCID: PMC9095866 DOI: 10.1038/s41467-022-30173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by “bottom-up” accretion from the most downstream regulator, tra-1. In most species, sex is determined by genetic or environmental factors. Here, the authors present evidence that sex determination in Bursaphelenchus nematodes is instead likely to be regulated by a random, epigenetic mechanism.
Collapse
|
8
|
Wen TY, Wu XQ, Ye JR, Qiu YJ, Rui L, Zhang Y. A Bursaphelenchus xylophilus pathogenic protein Bx-FAR-1, as potential control target, mediates the jasmonic acid pathway in pines. PEST MANAGEMENT SCIENCE 2022; 78:1870-1880. [PMID: 35060311 DOI: 10.1002/ps.6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a devastating forest disease and its pathogenesis remains unclear. Secreted enzymes and proteins are important pathogenicity determinants and Bx-FAR-1 is an important pathogenic protein involved in the interaction between pine and B. xylophilus. However, the function of the Bx-FAR-1 protein in monitoring and prevention PWD remains unknown. RESULTS We found a small peptide of B. xylophilus effector Bx-FAR-1 is sufficient for immunosuppression function in Nicotiana benthamiana. Transient expression of Bx-FAR-1 in N. benthamiana revealed that nuclear localization is required for its function. The results of the ligand binding test showed that Bx-FAR-1 protein had the ability to bind fatty acid and retinol. We demonstrated that Bx-FAR-1 targeted to the nuclei of Pinus thunbergii using the polyclonal antibody by immunologic approach. The content of jasmonic acid (JA) was significantly increased in P. thunbergii infected with B. xylophilus when Bx-FAR-1 was silenced. We identified an F-box protein as the host target of Bx-FAR-1 by yeast two-hybrid and co-immunoprecipitation. Moreover, we found that Pt-F-box-1 was up-regulated during B. xylophilus infection and the expression of Pt-F-box-1 was increased in Bx-FAR-1 double-stranded RNA (dsRNA)-treated host pines. CONCLUSION This study illustrated that Bx-FAR-1 might mediate the JA pathway to destroy the immune system of P. thunbergii, indicating that PWN likely secretes effectors to facilitate parasitism and promote infection, which could better reveal the pathogenesis mechanisms of B. xylophilus and would be beneficial for developing disease control strategies.
Collapse
Affiliation(s)
- Tong-Yue Wen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yi-Jun Qiu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Lu MR, Lai CK, Liao BY, Tsai IJ. Comparative Transcriptomics across Nematode Life Cycles Reveal Gene Expression Conservation and Correlated Evolution in Adjacent Developmental Stages. Genome Biol Evol 2021; 12:1019-1030. [PMID: 32467980 PMCID: PMC7353954 DOI: 10.1093/gbe/evaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Nematodes are highly abundant animals with diverse habitats and lifestyles. Some are free living whereas others parasitize animals or plants, and among the latter, infection abilities change across developmental stages to infect hosts and complete life cycles. To determine the relationship between transcriptome evolution and morphological divergences among nematodes, we compared 48 transcriptomes of different developmental stages across eight nematode species. The transcriptomes were clustered broadly into embryo, larva, and adult stages, with the developmental plastic stages were separated from common larval stages within the larval branch. This suggests that development was the major determining factor after lifestyle changes, such as parasitism, during transcriptome evolution. Such patterns were partly accounted for by tissue-specific genes—such as those in oocytes and the hypodermis—being expressed at different proportions. Although nematodes typically have 3–5 larval stages, the transcriptomes for these stages were found to be highly correlated within each species, suggesting high similarity among larval stages across species. For the Caenorhabditis elegans–Caenorhabditis briggsae and Strongyloides stercoralis–Strongyloides venezuelensis comparisons, we found that ∼50% of genes were expressed at multiple stages, whereas half of their orthologs were also expressed in multiple but different stages. Such frequent changes in expression have resulted in concerted transcriptome evolution across adjacent stages, thus generating species-specific transcriptomes over the course of nematode evolution. Our study provides a first insight into the evolution of nematode transcriptomes beyond embryonic development.
Collapse
Affiliation(s)
- Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Mani V, Assefa AD, Hahn BS. Transcriptome Analysis and miRNA Target Profiling at Various Stages of Root-Knot Nematode Meloidogyne incognita Development for Identification of Potential Regulatory Networks. Int J Mol Sci 2021; 22:ijms22147442. [PMID: 34299062 PMCID: PMC8307930 DOI: 10.3390/ijms22147442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Root-knot nematodes (RKNs) are a group of plant-parasitic nematodes that cause damage to various plant species and extensive economical losses. In this study, we performed integrated analysis of miRNA and mRNA expression data to explore the regulation of miRNA and mRNA in RKNs. In particular, we aimed to elucidate the mRNA targets of Meloidogyne incognita miRNAs and variations of the RKN transcriptome during five stages of its life cycle. Stage-wise RNA sequencing of M. incognita resulted in clean read numbers of 56,902,902, 50,762,456, 40,968,532, 47,309,223, and 51,730,234 for the egg, J2, J3, J4, and female stages, respectively. Overall, stage-dependent mRNA sequencing revealed that 17,423 genes were expressed in the transcriptome of M. incognita. The egg stage showed the maximum number of transcripts, and 12,803 gene transcripts were expressed in all stages. Functional Gene Ontology (GO) analysis resulted in three main GO classes: biological process, cellular components, and molecular function; the detected sequences were longer than sequences in the reference genome. Stage-wise selected fragments per kilobase of transcript per million mapped reads (FPKM) values of the top 10 stage-specific and common mRNAs were used to construct expression profiles, and 20 mRNAs were validated through quantitative real-time PCR (qRT-PCR). Next, we used three target prediction programs (miRanda, RNAhybrid, and PITA) to obtain 2431 potential target miRNA genes in RKNs, which regulate 8331 mRNAs. The predicted potential targets of miRNA were generally involved in cellular and metabolic processes, binding of molecules in the cell, membranes, and organelles. Stage-wise miRNA target analysis revealed that the egg stage contains heat shock proteins, transcriptional factors, and DNA repair proteins, whereas J2 includes DNA replication, heat shock, and ubiquitin-conjugating pathway-related proteins; the J3 and J4 stages are represented by the major sperm protein domain and translation-related proteins, respectively. In the female stage, we found proteins related to the maintenance of molybdopterin-binding domain-containing proteins and ubiquitin-mediated protein degradation. In total, 29 highly expressed stage-specific mRNA-targeting miRNAs were analyzed using qRT-PCR to validate the sequence analysis data. Overall, our findings provide new insights into the molecular mechanisms occurring at various developmental stages of the RKN life cycle, thus aiding in the identification of potential control strategies.
Collapse
Affiliation(s)
- Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Awraris Derbie Assefa
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: ; Tel.: +82-63-238-4930
| |
Collapse
|
12
|
Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes. Genes (Basel) 2021; 12:genes12050771. [PMID: 34070210 PMCID: PMC8158474 DOI: 10.3390/genes12050771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses.
Collapse
|
13
|
Copy Number Variations of Glycoside Hydrolase 45 Genes in Bursaphelenchus xylophilus and Their Impact on the Pathogenesis of Pine Wilt Disease. FORESTS 2021. [DOI: 10.3390/f12030275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pine wood nematode Bursaphelenchus xylophilus parasitizes millions of pine trees worldwide each year, causing severe wilt and the death of host trees. Glycoside hydrolase 45 genes of B. xylophilus are reported to have been acquired by horizontal gene transfer from fungi and are responsible for cell wall degradation during nematode infection. Previous studies ignored the possibility of copy number variations of such genes. In this study, we determined that two of the glycoside hydrolase 45 genes evolved to maintain multiple copies with distinct expression levels, enabling the nematode to infect a variety of pine hosts. Additionally, tandem repeat variations within coding regions were also detected between different copies of glycoside hydrolase 45 genes that could result in changes in protein sequences and serve as an effective biological marker to detect copy number variations among different B. xylophilus populations. Consequently, we were able to further identify the copy number variations of glycoside hydrolase 45 genes among B. xylophilus strains with different virulence. Our results provide new insights into the pathogenicity of B. xylophilus, provide a practical marker to genotype copy number variations and may aid in population classification.
Collapse
|
14
|
Genetic characteristics of Bursaphelenchus xylophilus third-stage dispersal juveniles. Sci Rep 2021; 11:3908. [PMID: 33594100 PMCID: PMC7887269 DOI: 10.1038/s41598-021-82343-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
The third-stage dispersal juvenile (DJ3) of pinewood nematode (PWN) is highly associated with low-temperature survival and spread of the nematode. Oil-Red-O staining showed that its lipid content was significantly higher compared with other PWN stages. Weighted gene coexpression network analysis identified that genes in the pink module were highly related to DJ3 induced in the laboratory (DJ3-lab). These genes were arranged according to their gene significance (GS) to DJ3-lab. Of the top 30 genes with the highest GS, seven were found to be highly homologous to the cysteine protease family cathepsin 1 (CATH1). The top 30 genes with the highest weight value to each of the seven genes in the pink module were selected, and finally 35 genes were obtained. Between these seven CATH1 homologous genes and their 35 highly related genes, 15 were related to fat metabolism or autophagy. These autophagy-related genes were also found to be highly correlated with other genes in the pink module, suggesting that autophagy might be involved in the mechanism of longevity in DJ3 and the formation of DJ3 by regulating genes related to fat metabolism.
Collapse
|
15
|
Silva H, Anjo SI, Manadas B, Abrantes I, Fonseca L, Cardoso JMS. Comparative Analysis of Bursaphelenchus xylophilus Secretome Under Pinus pinaster and P. pinea Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:668064. [PMID: 34046053 PMCID: PMC8144518 DOI: 10.3389/fpls.2021.668064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 05/19/2023]
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, the pine wilt disease's (PWD) causal agent, is a migratory endoparasitic nematode skilled to feed on pine tissues and on fungi that colonize the trees. In order to study B. xylophilus secretomes under the stimulus of pine species with different susceptibilities to disease, nematodes were exposed to aqueous pine extracts from Pinus pinaster (high-susceptible host) and P. pinea (low-susceptible host). Sequential windowed acquisition of all theoretical mass spectra (SWATH-MS) was used to determine relative changes in protein amounts between B. xylophilus secretions, and a total of 776 secreted proteins were quantified in both secretomes. From these, 22 proteins were found increased in the B. xylophilus secretome under the P. pinaster stimulus and 501 proteins increased under the P. pinea stimulus. Functional analyses of the 22 proteins found increased in the P. pinaster stimulus showed that proteins with peptidase, hydrolase, and antioxidant activities were the most represented. On the other hand, gene ontology (GO) enrichment analysis of the 501 proteins increased under the P. pinea stimulus revealed an enrichment of proteins with binding activity. The differences detected in the secretomes highlighted the diverse responses from the nematode to overcome host defenses with different susceptibilities and provide new clues on the mechanism behind the pathogenicity of this plant-parasitic nematode. Proteomic data are available via ProteomeXchange with identifier PXD024011.
Collapse
Affiliation(s)
- Hugo Silva
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Sandra I. Anjo
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Luís Fonseca
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Joana M. S. Cardoso
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
- *Correspondence: Joana M. S. Cardoso,
| |
Collapse
|
16
|
Han Z, Lo WS, Lightfoot JW, Witte H, Sun S, Sommer RJ. Improving Transgenesis Efficiency and CRISPR-Associated Tools Through Codon Optimization and Native Intron Addition in Pristionchus Nematodes. Genetics 2020; 216:947-956. [PMID: 33060138 PMCID: PMC7768246 DOI: 10.1534/genetics.120.303785] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
A lack of appropriate molecular tools is one obstacle that prevents in-depth mechanistic studies in many organisms. Transgenesis, clustered regularly interspaced short palindromic repeats (CRISPR)-associated engineering, and related tools are fundamental in the modern life sciences, but their applications are still limited to a few model organisms. In the phylum Nematoda, transgenesis can only be performed in a handful of species other than Caenorhabditis elegans, and additionally, other species suffer from significantly lower transgenesis efficiencies. We hypothesized that this may in part be due to incompatibilities of transgenes in the recipient organisms. Therefore, we investigated the genomic features of 10 nematode species from three of the major clades representing all different lifestyles. We found that these species show drastically different codon usage bias and intron composition. With these findings, we used the species Pristionchus pacificus as a proof of concept for codon optimization and native intron addition. Indeed, we were able to significantly improve transgenesis efficiency, a principle that may be usable in other nematode species. In addition, with the improved transgenes, we developed a fluorescent co-injection marker in P. pacificus for the detection of CRISPR-edited individuals, which helps considerably to reduce associated time and costs.
Collapse
Affiliation(s)
- Ziduan Han
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Wen-Sui Lo
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - James W Lightfoot
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Shuai Sun
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| |
Collapse
|
17
|
Xu L, Yang J, Xu M, Shan D, Wu Z, Yuan D. Speciation and adaptive evolution reshape antioxidant enzymatic system diversity across the phylum Nematoda. BMC Biol 2020; 18:181. [PMID: 33243226 PMCID: PMC7694339 DOI: 10.1186/s12915-020-00896-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nematodes have evolved to survive in diverse ecological niches and can be a serious burden on agricultural economy, veterinary medicine, and public health. Antioxidant enzymes in parasitic nematodes play a critical role in defending against host oxidative stress. However, the features of the evolution of antioxidant enzymes in the phylum Nematoda remain elusive. Results Here, we systematically investigated the evolution and gene expression of antioxidant enzymes in the genomes of 59 nematodes and transcriptomes of 20 nematodes. Catalase has been independently lost in several orders, suggesting that it is unnecessary for some nematodes. Unlike in mammals, phospholipid hydroperoxide glutathione peroxidase is widely distributed in nematodes, among which it has evolved independently. We found that superoxide dismutase (SOD) has been present throughout nematode evolutionary process, and the extracellular isoform (SOD3) is diverged from the corresponding enzyme in mammals and has undergone duplication and differentiation in several nematodes. Moreover, the evolution of intracellular and extracellular SOD isoforms in filaria strongly indicates that extracellular SOD3 originated from intracellular SOD1 and underwent rapid evolution to form the diversity of extracellular SOD3. We identify a novel putative metal-independent extracellular SOD presenting independently in Steinernema and Strongyloididae lineage that featured a high expression level in Strongyloides larvae. Sequence divergence of SOD3 between parasitic nematodes and their closest free-living nematode, the specifically high expression in the parasitic female stage, and presence in excretory-secretory proteome of Strongyloides suggest that SOD3 may be related with parasitism. Conclusions This study advances our understanding of the complex evolution of antioxidant enzymes across Nematoda and provides targets for controlling parasitic nematode diseases.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Xu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Dongjuan Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Molecular variation among virulent and avirulent strains of the quarantine nematode Bursaphelenchus xylophilus. Mol Genet Genomics 2020; 296:259-269. [PMID: 33169231 PMCID: PMC7895788 DOI: 10.1007/s00438-020-01739-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Bursaphelenchus xylophilus is an emerging pathogenic nematode that is responsible for a devastating epidemic of pine wilt disease worldwide, causing severe ecological damage and economic losses to forestry. Two forms of this nematode have been reported, i.e., with strong and weak virulence, commonly referred as virulent and avirulent strains. However, the pathogenicity-related genes of B. xylophilus are not sufficiently characterized. In this study, to find pathogenesis related genes we re-sequenced and compared genomes of two virulent and two avirulent populations. We identified genes affected by genomic variation, and functional annotation of those genes indicated that some of them might play potential roles in pathogenesis. The performed analysis showed that both avirulent populations differed from the virulent ones by 1576 genes with high impact variants. Demonstration of genetic differences between virulent and avirulent strains will provide effective methods to distinguish these two nematode virulence forms at the molecular level. The reported results provide basic information that can facilitate development of a better diagnosis for B. xylophilus isolates/strains which present different levels of virulence and better understanding of the molecular mechanism involved in the development of the PWD.
Collapse
|
19
|
Nearly Complete Genome Assembly of the Pinewood Nematode Bursaphelenchus xylophilus Strain Ka4C1. Microbiol Resour Announc 2020; 9:9/42/e01002-20. [PMID: 33060277 PMCID: PMC7561696 DOI: 10.1128/mra.01002-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bursaphelenchus xylophilus has been destroying pine forests in East Asia and western Europe. Here, we report its nearly complete genomic sequence containing five ∼12-Mb scaffolds and one ∼15-Mb scaffold representing six chromosomes. Large repeat regions that were previously unidentified are now reasonably integrated, particularly in the ∼15-Mb scaffold. Bursaphelenchus xylophilus has been destroying pine forests in East Asia and western Europe. Here, we report its nearly complete genomic sequence containing five ∼12-Mb scaffolds and one ∼15-Mb scaffold representing six chromosomes. Large repeat regions that were previously unidentified are now reasonably integrated, particularly in the ∼15-Mb scaffold.
Collapse
|
20
|
Lu F, Guo K, Chen A, Chen S, Lin H, Zhou X. Transcriptomic profiling of effects of emamectin benzoate on the pine wood nematode Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2020; 76:747-757. [PMID: 31386282 DOI: 10.1002/ps.5575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Emamectin benzoate (EB) has recently been successfully applied as a trunk injection for preventative control of the pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle. Here, a whole-organism transcriptomic analysis provides comprehensive insights into the adverse effects of EB on B. xylophilus. RESULTS A large set of differentially expressed genes (DEGs) were found, demonstrating the antagonistic effects of EB on B. xylophilus embryonic and larval development, reproduction, nervous and motor systems, and pathogenesis. In toxicity assays with EB, the number of eggs laid, hatching rate, thrashing frequency, and developmental rate of B. xylophilus were significantly suppressed at low concentrations (0.1 μg mL-1 ). Moreover, the transcriptional changes validated by real-time quantitative PCR showed downregulated transcript levels of the genes encoding pectate lyases, β-1,4-endoglucanases, and upregulated the genes encoding glutamate-gated chloride channel, γ-aminobutyric acid type β receptor, uridine 5'-diphospho-glucuronosyl transferase, ATP-binding cassette transporter. The potential responses of B. xylophilus to EB included the upregulation of several genes putatively contributing to oocyte protection, stem cell renewal, and xenobiotic degradation, implying the potential for drug resistance to develop. CONCLUSION Our findings further our understanding of the effects of EB for managing the PWD and may help to improve the pesticide-use strategies for controlling B. xylophilus. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Lu
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Kai Guo
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Anliang Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Shani Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Haiping Lin
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiang Zhou
- Collaborative Innovation Center of Zhejiang Green Pesticide, State key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|