1
|
Kayal E, Lavrov DV. One Ring does not rule them all: Linear mtDNA in Metazoa. Gene 2025; 933:148999. [PMID: 39396556 DOI: 10.1016/j.gene.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in genome sequencing technologies have facilitated the exploration of the architecture of genomes, including mitochondrial genomes (mtDNA). In particular, whole genome sequencing has provided easier access to mitochondrial genomes with unusual organizations, which were difficult to obtain using traditional PCR-based approaches. As a consequence, there has been a steep increase in complete mtDNA sequences, particularly for Metazoa. The popular view of metazoan mtDNA is that of a small gene-dense circular chromosome. This view clashes with discoveries of a number of linear mtDNAs, particularly in non-bilaterian animals. Here, we review the distribution of linear mtDNA in Metazoa, namely in isopods, cnidarians, and sponges. We discuss the multiple origins of linear mitogenomes in these clades, where linearity has been linked to the likely insertion of a linear plasmid in cnidarians and the demosponge Acanthella acuta, while fixation of a heteroplasmy in the anticodon site of a tRNA might be responsible for the monolinear form of the mtDNA in some isopods. We also summarize our current knowledge of mechanisms that maintain the integrity of linear mitochromosomes, where a recurrent theme is the presence of terminal repeats that likely play the role of telomeres. We caution in defining a linear chromosome as complete, particularly when coding sequences and key features of linear DNA are missing. Finally, we encourage authors interested in mitogenome science to utilize all available data for linear mtDNA, including those tagged as "incomplete" or "unverified" in public databases, as they can still provide useful information such as phylogenetic characters and gene order.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
3
|
Ling MK, Yap NWL, Iesa IB, Yip ZT, Huang D, Quek ZBR. Revisiting mitogenome evolution in Medusozoa with eight new mitochondrial genomes. iScience 2023; 26:108252. [PMID: 37965150 PMCID: PMC10641506 DOI: 10.1016/j.isci.2023.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mitogenomics has improved our understanding of medusozoan phylogeny. However, sequenced medusozoan mitogenomes remain scarce, and Medusozoa phylogeny studies often analyze mitogenomic sequences without incorporating mitogenome rearrangements. To better understand medusozoan evolution, we analyzed Medusozoa mitogenome phylogeny by sequencing and assembling eight mitogenomes from three classes (Cubozoa, Hydrozoa, and Scyphozoa). We reconstructed the mitogenome phylogeny using these mitogenomes and 84 other existing cnidarian mitogenomes to study mitochondrial gene rearrangements. All reconstructed mitogenomes had 13 mitochondrial protein-coding genes and two ribosomal genes typical for Medusozoa. Non-cubozoan mitogenomes were all linear and had typical gene orders, while arrangement of genes in the fragmented Cubozoa (Morbakka sp.) mitogenome differed from other Cubozoa mitogenomes. Gene order comparisons and ancestral state reconstruction suggest minimal rearrangements within medusozoan classes except for Hydrozoa. Our findings support a staurozoan ancestral medusozoan gene order, expand the pool of available medusozoan mitogenomes, and enhance our understanding of medusozoan phylogenetic relationships.
Collapse
Affiliation(s)
- Min Kang Ling
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nicholas Wei Liang Yap
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- St. John’s Island National Marine Laboratory, c/o Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Iffah Binte Iesa
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zheng Bin Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| |
Collapse
|
4
|
Fourreau CJL, Kise H, Santander MD, Pirro S, Maronna MM, Poliseno A, Santos ME, Reimer JD. Genome sizes and repeatome evolution in zoantharians (Cnidaria: Hexacorallia: Zoantharia). PeerJ 2023; 11:e16188. [PMID: 37868064 PMCID: PMC10586311 DOI: 10.7717/peerj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Across eukaryotes, large variations of genome sizes have been observed even between closely related species. Transposable elements as part of the repeated DNA have been proposed and confirmed as one of the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and transposable element dynamics are not well understood. Together with phenotypic traits, they are commonly referred to as the "C-value enigma". The order Zoantharia are benthic cnidarians found from intertidal zones to the deep sea, and some species are particularly abundant in coral reefs. Despite their high ecological relevance, zoantharians have yet to be largely studied from the genomic point of view. This study aims at investigating the role of the repeatome (total content of repeated elements) in genome size variations across the order Zoantharia. To this end, whole-genomes of 32 zoantharian species representing five families were sequenced. Genome sizes were estimated and the abundances of different repeat classes were assessed. In addition, the repeat overlap between species was assessed by a sequence clustering method. The genome sizes in the dataset varied up to 2.4 fold magnitude. Significant correlations between genome size, repeated DNA content and transposable elements, respectively (Pearson's correlation test R2 = 0.47, p = 0.0016; R2 = 0.22, p = 0.05) were found, suggesting their involvement in the dynamics of genome expansion and reduction. In all species, long interspersed nuclear elements and DNA transposons were the most abundant identified elements. These transposable elements also appeared to have had a recent expansion event. This was in contrast to the comparative clustering analysis which revealed species-specific patterns of satellite elements' amplification. In summary, the genome sizes of zoantharians likely result from the complex dynamics of repeated elements. Finally, the majority of repeated elements (up to 70%) could not be annotated to a known repeat class, highlighting the need to further investigate non-model cnidarian genomes. More research is needed to understand how repeated DNA dynamics relate to zoantharian evolution and their biology.
Collapse
Affiliation(s)
- Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- AIST Tsukuba Central, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mylena Daiana Santander
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stacy Pirro
- Iridian Genomes, Bethesda, United States of America
| | - Maximiliano M. Maronna
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Maria E.A. Santos
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, United States of America
| |
Collapse
|
5
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan L, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals their stem cells utilize a toolkit of evolutionarily shared genes with all animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554815. [PMID: 37786714 PMCID: PMC10541594 DOI: 10.1101/2023.08.25.554815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liam Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Swarthmore College, Swarthmore, PA 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- NIH Intramural Sequencing Center, Rockville, MD 20852, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci Rep 2023; 13:7443. [PMID: 37156831 PMCID: PMC10167242 DOI: 10.1038/s41598-023-34059-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, São Sebastião, 11612-109, Brazil
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Natasha Floerke
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Estefanía Rodriguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | | |
Collapse
|
7
|
Novosolov M, Yahalomi D, Chang ES, Fiala I, Cartwright P, Huchon D. The Phylogenetic Position of the Enigmatic, Polypodium hydriforme (Cnidaria, Polypodiozoa): Insights from Mitochondrial Genomes. Genome Biol Evol 2022; 14:6648524. [PMID: 35867352 PMCID: PMC9380995 DOI: 10.1093/gbe/evac112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Polypodium hydriforme is an enigmatic parasite that belongs to the phylum Cnidaria. Its taxonomic position has been debated: whereas it was previously suggested to be part of Medusozoa, recent phylogenomic analyses based on nuclear genes support the view that P. hydriforme and Myxozoa form a clade called Endocnidozoa. Medusozoans have linear mitochondrial (mt) chromosomes, whereas myxozoans, as most metazoan species, have circular chromosomes. In this work, we determined the structure of the mt genome of P. hydriforme, using Illumina and Oxford Nanopore Technologies reads, and showed that it is circular. This suggests that P. hydriforme is not nested within Medusozoa, as this would entail linearization followed by recirculation. Instead, our results support the view that P. hydriforme is a sister clade to Myxozoa, and mt linearization in the lineage leading to medusozoans occurred after the divergence of Myxozoa + P. hydriforme. Detailed analyses of the assembled P. hydriforme mt genome show that: (1) it is encoded on a single circular chromosome with an estimated size of ∼93,000 base pairs, making it one of the largest metazoan mt genomes; (2) around 78% of the genome encompasses a noncoding region composed of several repeat types; (3) similar to Myxozoa, no mt tRNAs were identified; (4) the codon TGA is a stop codon and does not encode for tryptophan as in other cnidarians; (5) similar to myxozoan mt genomes, it is extremely fast evolving.
Collapse
Affiliation(s)
- Maria Novosolov
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dayana Yahalomi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - E Sally Chang
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Haworth Hall, Lawrence, KS, 66045, USA.,Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budĕjovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budĕjovice, Czech Republic
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Haworth Hall, Lawrence, KS, 66045, USA
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
9
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 2: Exploring evolutionary controversies and promising questions on earth and in space. Bioessays 2021; 43:e2100083. [PMID: 34490659 DOI: 10.1002/bies.202100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
The placozoan Trichoplax adhaerens has been bridging gaps between research disciplines like no other animal. As outlined in part 1, placozoans have been subject of hot evolutionary debates and placozoans have challenged some fundamental evolutionary concepts. Here in part 2 we discuss the exceptional genetics of the phylum Placozoa and point out some challenging model system applications for the best known species, Trichoplax adhaerens.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
10
|
Pazoki S, Rahimian H, Struck TH. Genetic diversity and population structure of three Hydroides species (Sedentaria, Serpulidae) in the Persian Gulf and Gulf of Oman, with the possible indication of heteroplasmy. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1965668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samaneh Pazoki
- Department of Animal Biology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Hassan Rahimian
- Department of Animal Biology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Torsten H. Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, NO-0318, Norway
| |
Collapse
|
11
|
DE Godoy IA, Alberts CC, Nespolo CH, Oliveira JDE, Stampar SN. Is it possible to use behavior characters for evolutionary reconstruction in marine invertebrates? A methodological approach using Ethokit Logger. AN ACAD BRAS CIENC 2021; 93:e20191468. [PMID: 34287459 DOI: 10.1590/0001-3765202120191468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/30/2020] [Indexed: 11/22/2022] Open
Abstract
The use of behavioral data is quite common in studies of chordate animals and some groups of arthropods; however, these data are usually used in ecological and conservation studies. Their use remains uncommon in phylogenetic reconstructions, especially for non-model groups in behavioral studies. This study aims to evaluate the methodological use of behavioral (feeding process) data with EthoKit Logger in the phylogenetic reconstruction of the Cnidaria, a group in the so-called 'lower' Metazoa. The results indicate considerable cohesion with reconstructions based on molecular data available in previous studies. We therefore suggest that the use of behavioral characters can possible be a useful secondary tool or a proof test for molecular evolutionary reconstructions.
Collapse
Affiliation(s)
- Isabela A DE Godoy
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Laboratório de Evolução e Diversidade Aquática (LEDA), Departamento de Ciências Biológicas, FCL/Assis, Av. Dom Antonio, 2100, 19806-900 Assis, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Zoologia, Distrito de Rubião Júnior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Carlos C Alberts
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Departamento de Ciências Biológicas, FCL/Assis, Av. Dom Antonio, 2100, 19806-900 Assis, SP, Brazil
| | - Caio H Nespolo
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Departamento de Ciências Biológicas, FCL/Assis, Av. Dom Antonio, 2100, 19806-900 Assis, SP, Brazil
| | - Juliana DE Oliveira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Departamento de Ciências Biológicas, FCL/Assis, Av. Dom Antonio, 2100, 19806-900 Assis, SP, Brazil
| | - Sérgio N Stampar
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Laboratório de Evolução e Diversidade Aquática (LEDA), Departamento de Ciências Biológicas, FCL/Assis, Av. Dom Antonio, 2100, 19806-900 Assis, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências, Departamento de Zoologia, Distrito de Rubião Júnior, s/n, 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
12
|
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E. Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). Syst Biol 2021; 70:635-647. [PMID: 33507310 DOI: 10.1093/sysbio/syaa103] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Abstract
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA.,Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902, USA
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Luisa F Dueñas
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 No.45-03 Edificio 421, Bogotá, D.C., Colombia
| | - Marcelo V Kitahara
- Department of Marine Science, Federal University of São Paulo, Santos, SP 11070-100 Brazil.,Centre for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109 Brazil
| | - David A Paz-García
- CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. Calle IPN 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S., México
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Science, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
13
|
Tempestini A, Massamba-N'Siala G, Vermandele F, Beaudreau N, Mortz M, Dufresne F, Calosi P. Extensive gene rearrangements in the mitogenomes of congeneric annelid species and insights on the evolutionary history of the genus Ophryotrocha. BMC Genomics 2020; 21:815. [PMID: 33225885 PMCID: PMC7682095 DOI: 10.1186/s12864-020-07176-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Annelids are one the most speciose and ecologically diverse groups of metazoans. Although a significant effort has been recently invested in sequencing genomes of a wide array of metazoans, many orders and families within the phylum Annelida are still represented by a single specimen of a single species. The genus of interstitial annelids Ophryotrocha (Dorvilleidae, Errantia, Annelida) is among these neglected groups, despite its extensive use as model organism in numerous studies on the evolution of life history, physiological and ecological traits. To compensate for the paucity of genomic information in this genus, we here obtained novel complete mitochondrial genomes of six Ophryotrocha species using next generation sequencing. In addition, we investigated the evolution of the reproductive mode in the Ophryotrocha genus using a phylogeny based on two mitochondrial markers (COXI and 16S rDNA) and one nuclear fragment (Histone H3). RESULTS Surprisingly, gene order was not conserved among the six Ophryotrocha species investigated, and varied greatly as compared to those found in other annelid species within the class Errantia. The mitogenome phylogeny for the six Ophryotrocha species displayed a separation of gonochoric and hermaphroditic species. However, this separation was not observed in the phylogeny based on the COX1, 16S rDNA, and H3 genes. Parsimony and Bayesian ancestral trait reconstruction indicated that gonochorism was the most parsimonious ancestral reproductive mode in Ophryotrocha spp. CONCLUSIONS Our results highlight the remarkably high level of gene order variation among congeneric species, even in annelids. This encourages the need for additional mitogenome sequencing of annelid taxa in order to properly understand its mtDNA evolution, high biodiversity and phylogenetic relationships.
Collapse
Affiliation(s)
- Astrid Tempestini
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Gloria Massamba-N'Siala
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Fanny Vermandele
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Nicholas Beaudreau
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Mathieu Mortz
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - France Dufresne
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| |
Collapse
|
14
|
A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics 2020; 21:666. [PMID: 32993486 PMCID: PMC7523074 DOI: 10.1186/s12864-020-06945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nervous systems originated before the split of Proto- and Deuterostomia, more than 600 million years ago. Four animal phyla (Cnidaria, Placozoa, Ctenophora, Porifera) diverged before this split and studying these phyla could give us important information on the evolution of the nervous system. Here, we have annotated the neuropeptide preprohormone genes of twenty species belonging to the subclass Hexacorallia or Ceriantharia (Anthozoa: Cnidaria), using thirty-seven publicly accessible genome or transcriptome databases. Studying hexacorals is important, because they are versatile laboratory models for development (e.g., Nematostella vectensis) and symbiosis (e.g., Exaiptasia diaphana) and also are prominent reef-builders. Results We found that each hexacoral or ceriantharian species contains five to ten neuropeptide preprohormone genes. Many of these preprohormones contain multiple copies of immature neuropeptides, which can be up to 50 copies of identical or similar neuropeptide sequences. We also discovered preprohormones that only contained one neuropeptide sequence positioned directly after the signal sequence. Examples of them are neuropeptides that terminate with the sequence RWamide (the Antho-RWamides). Most neuropeptide sequences are N-terminally protected by pyroglutamyl (pQ) or one or more prolyl residues, while they are C-terminally protected by an amide group. Previously, we isolated and sequenced small neuropeptides from hexacorals that were N-terminally protected by an unusual L-3-phenyllactyl group. In our current analysis, we found that these N-phenyllactyl-peptides are derived from N-phenylalanyl-peptides located directly after the signal sequence of the preprohormone. The N-phenyllactyl- peptides appear to be confined to the hexacorallian order Actiniaria and do not occur in other cnidarians. On the other hand, (1) the neuropeptide Antho-RFamide (pQGRFamide); (2) peptides with the C-terminal sequence GLWamide; and (3) tetrapeptides with the X1PRX2amide consensus sequence (most frequently GPRGamide) are ubiquitous in Hexacorallia. Conclusions We found GRFamide, GLWamide, and X1PRX2amide peptides in all tested Hexacorallia. Previously, we discovered these three neuropeptide classes also in Cubozoa, Scyphozoa, and Staurozoa, indicating that these neuropeptides originated in the common cnidarian ancestor and are evolutionarily ancient. In addition to these ubiquitous neuropeptides, other neuropeptides appear to be confined to specific cnidarian orders or subclasses.
Collapse
|
15
|
Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms. Mar Drugs 2020; 18:md18080413. [PMID: 32764303 PMCID: PMC7460484 DOI: 10.3390/md18080413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.
Collapse
Affiliation(s)
- Anna M. L. Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
- Correspondence:
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth, Drive Lakeland, FL 33801, USA
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
| | - Sérgio N. Stampar
- Department of Biological Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), FCL, Assis, SP 19806, Brazil;
| |
Collapse
|
16
|
Smith DR. Revisiting Ceriantharian (Anthozoa) Mitochondrial Genomes: Casting Doubts about Their Structure and Size. Genome Biol Evol 2020; 12:1440-1443. [PMID: 32589745 PMCID: PMC7487158 DOI: 10.1093/gbe/evaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Recently, Stampar et al. (2019. Linear mitochondrial genome in Anthozoa (Cnidaria): a case study in. Sci Rep. 9(1):6094.) uncovered highly atypical mitochondrial genome structures in the cnidarian species Pachycerianthus magnus and Isarachnanthus nocturnus (Anthozoa, Ceriantharia). These two mitochondrial DNAs assembled as linear fragmented genomes, comprising eight and five chromosomes, respectively—architectures unlike any other anthozoan mitogenome described to date. What’s more, they have cumulative lengths of 77.8 (P. magnus) and 80.9 kb (I. nocturnus), making them the largest animal mitochondrial DNAs on record, a finding which garnered significant attention by various news media. Here, I take a closer look at the work of Stampar et al. and question their key results. I provide evidence that the currently available mitogenome sequences for I. nocturnus and P. magnus, including their structures, sizes, and chromosome numbers, should be treated with caution. More work must be done on these genomes before one can say with any certainty that they are linear, fragmented, or the largest animal mitogenomes observed to date.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Stampar SN, Reimer JD, Maronna MM, Lopes CSS, Ceriello H, Santos TB, Acuña FH, Morandini AC. Ceriantharia (Cnidaria) of the World: an annotated catalogue and key to species. Zookeys 2020; 952:1-63. [PMID: 32774111 PMCID: PMC7394777 DOI: 10.3897/zookeys.952.50617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/01/2022] Open
Abstract
The diversity of Ceriantharia is known from studies formally describing species from the late 18th Century onwards. However, no nomenclators including a list and discussion of all valid species have been produced since a list discussed by Carlgren in 1912. The present nomenclator presents a complete list of adult species of Ceriantharia of the World, including a discussion on each species. It includes the three families (Arachnactidae, Botrucnidiferidae, Cerianthidae) and the currently accepted 54 species based on their adult form. This study serves as a presentation of the “state-of-the-art” list of species of Ceriantharia, and includes a species identification key to support taxonomic identification. Additional in-depth species-by-species investigations for almost all cerianthid species is still needed, as the information available for most of these species is quite superficial.
Collapse
Affiliation(s)
- Sérgio N Stampar
- Universidade Estadual Paulista (UNESP), FCL/Assis, Laboratório de Evolução e Diversidade Aquática; LEDA, Departamento de Ciências Biológicas, Assis, Brazil.,Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Instituto de Biociências, Botucatu, SP, Brazil
| | - James D Reimer
- University of The Ryukyus, Faculty of Science, Department of Biology, Chemistry, and Marine Science, MISE (Molecular Invertebrate Systematics and Ecology) Laboratory, Okinawa, Japan.,University of The Ryukyus, Tropical Biosphere Research Center, Okinawa, Japan
| | | | - Celine S S Lopes
- Universidade Estadual Paulista (UNESP), FCL/Assis, Laboratório de Evolução e Diversidade Aquática; LEDA, Departamento de Ciências Biológicas, Assis, Brazil.,Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Instituto de Biociências, Botucatu, SP, Brazil
| | - Hellen Ceriello
- Universidade Estadual Paulista (UNESP), FCL/Assis, Laboratório de Evolução e Diversidade Aquática; LEDA, Departamento de Ciências Biológicas, Assis, Brazil.,Universidade Estadual Paulista (UNESP), Departamento de Zoologia, Instituto de Biociências, Botucatu, SP, Brazil
| | - Thais B Santos
- Universidade Estadual Paulista (UNESP), FCL/Assis, Laboratório de Evolução e Diversidade Aquática; LEDA, Departamento de Ciências Biológicas, Assis, Brazil.,University of The Ryukyus, Faculty of Science, Department of Biology, Chemistry, and Marine Science, MISE (Molecular Invertebrate Systematics and Ecology) Laboratory, Okinawa, Japan
| | - Fabián H Acuña
- Instituto de Investigaciones Marinas y Costeras (Iimyc) CONICET; Facultad De Ciencias Exactas y Naturales Universidad Nacional de Mar Del Plata Funes 3250. 7600 Mar Del Plata, Argentina.,Estación Científica Coiba (Coiba-Aip), Clayton, Panamá, República de Panamá
| | - André C Morandini
- Universidade de São Paulo (USP), Instituto de Biociências, São Paulo, SP, Brazil.,Universidade de São Paulo (USP), Centro de Biologia Marinha, São Sebastião, SP, Brazil
| |
Collapse
|
18
|
Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes (Basel) 2020; 11:genes11050514. [PMID: 32384722 PMCID: PMC7288456 DOI: 10.3390/genes11050514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Studies of mitochondrial (mt)DNA replication, which forms the basis of mitochondrial inheritance, have demonstrated that a rolling-circle replication mode exists in yeasts and human cells. In yeast, rolling-circle mtDNA replication mediated by homologous recombination is the predominant pathway for replication of wild-type mtDNA. In human cells, reactive oxygen species (ROS) induce rolling-circle replication to produce concatemers, linear tandem multimers linked by head-to-tail unit-sized mtDNA that promote restoration of homoplasmy from heteroplasmy. The event occurs ahead of mtDNA replication mechanisms observed in mammalian cells, especially under higher ROS load, as newly synthesized mtDNA is concatemeric in hydrogen peroxide-treated human cells. Rolling-circle replication holds promise for treatment of mtDNA heteroplasmy-attributed diseases, which are regarded as incurable. This review highlights the potential therapeutic value of rolling-circle mtDNA replication.
Collapse
|
19
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Poliseno A, Santos MEA, Kise H, Macdonald B, Quattrini AM, McFadden CS, Reimer JD. Evolutionary implications of analyses of complete mitochondrial genomes across order Zoantharia (Cnidaria: Hexacorallia). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | - Maria Eduarda Alves Santos
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
| | | | - Andrea M. Quattrini
- Department of Biology Harvey Mudd College Claremont CA USA
- Department of Invertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington, DC USA
| | | | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| |
Collapse
|
21
|
Forero Mejia AC, Molodtsova T, Östman C, Bavestrello G, Rouse GW. Molecular phylogeny of Ceriantharia (Cnidaria: Anthozoa) reveals non-monophyly of traditionally accepted families. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We present an integrative study with molecular phylogenetic reconstructions and morphological assessment across the three Ceriantharia families: Arachnactidae, Botrucnidiferidae and Cerianthidae. The Arachnactidae specimens (Isarachnanthus spp.) form a well-supported clade, whereas Cerianthidae and Botrucnidiferidae are not recovered as monophyletic. Consequently, the validity of the suborder Spirularia is questioned. Cerianthus was recovered as polyphyletic and Ceriantheomorphe may prove to be a junior synonym of Cerianthus. The taxonomic position of Cerianthus cf. mortenseni is also discussed. All specimens identified on morphology as belonging to Pachycerianthus are recovered as a clade. Further revision of taxa within Ceriantharia is necessary. Molecular phylogenetic analyses based on six mitochondrial or nuclear loci place Ceriantharia as sister to Hexacorallia s.s., but with no significant support relative to an alternative hypothesis that it is the sister taxon to Octocorallia. Further molecular sequence data and taxon sampling will be needed to resolve the position of Ceriantharia.
Collapse
Affiliation(s)
- Anny C Forero Mejia
- Università degli Studi di Genova, Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Genova, Italy
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Division of Biological and Environmental Sciences & Engineering, Thuwal, Saudi Arabia
| | - Tina Molodtsova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Carina Östman
- Uppsala University, Department of Organismal Biology, Uppsala, Sweden
| | - Giorgio Bavestrello
- Università degli Studi di Genova, Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Genova, Italy
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Xiao M, Brugler MR, Broe MB, Gusmão LC, Daly M, Rodríguez E. Mitogenomics suggests a sister relationship of Relicanthus daphneae (Cnidaria: Anthozoa: Hexacorallia: incerti ordinis) with Actiniaria. Sci Rep 2019; 9:18182. [PMID: 31796816 PMCID: PMC6890759 DOI: 10.1038/s41598-019-54637-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Relicanthus daphneae (formerly Boloceroides daphneae) was first described in 2006 as a giant sea anemone based on morphology. In 2014, its classification was challenged based on molecular data: using five genes, Relicanthus was resolved sister to zoanthideans, but with mixed support. To better understand the evolutionary relationship of Relicanthus with other early-branching metazoans, we present 15 newly-sequenced sea anemone mitochondrial genomes and a mitogenome-based phylogeny including all major cnidarian groups, sponges, and placozoans. Our phylogenetic reconstruction reveals a moderately supported sister relationship between Relicanthus and the Actiniaria. Morphologically, the cnidae of Relicanthus has apical flaps, the only existing synapomorphy for sea anemones. Based on both molecular and morphological results, we propose a third suborder (Helenmonae) within the Actiniaria to accommodate Relicanthus. Although Relicanthus shares the same gene order and content with other available actiniarian mitogenomes, it is clearly distinct at the nucleotide level from anemones within the existing suborders. The phylogenetic position of Relicanthus could reflect its association with the periphery of isolated hydrothermal vents, which, although patchy and ephemeral, harbor unique chemosynthetic communities that provide a relatively stable food source to higher trophic levels over long evolutionary timescales. The ability to colonize the deep sea and the periphery of new vent systems may be facilitated by Relicanthus’ large and extremely yolky eggs.
Collapse
Affiliation(s)
- Madelyne Xiao
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Mercer R Brugler
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.,Biological Sciences Department, NYC College of Technology (CUNY), 285 Jay Street, Brooklyn, NY, 11201, USA
| | - Michael B Broe
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, Columbus, OH, 43210, USA
| | - Luciana C Gusmão
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, Columbus, OH, 43210, USA.
| | - Estefanía Rodríguez
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| |
Collapse
|
23
|
He S, Grasis JA, Nicotra ML, Juliano CE, Schnitzler CE. Cnidofest 2018: the future is bright for cnidarian research. EvoDevo 2019; 10:20. [PMID: 31508195 PMCID: PMC6724248 DOI: 10.1186/s13227-019-0134-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110 USA
| | - Juris A. Grasis
- School of Natural Sciences, University of California, Merced, CA 95343 USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|