1
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Gonzalez-Pumariega M, Elez J, Duarte E, de la Rasilla M, Canaveras JC, Saiz-Jimenez C, Sanchez-Moral S. Adaptive response of prokaryotic communities to extreme pollution flooding in a Paleolithic rock art cave (Pindal Cave, northern Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171137. [PMID: 38401719 DOI: 10.1016/j.scitotenv.2024.171137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
A flood event affecting Pindal Cave, a UNESCO World Heritage site, introduced a substantial amount of external sediments and waste into the cave. This event led to the burial of preexisting sediments, altering the biogeochemical characteristics of the cave ecosystem by introducing heightened levels of organic matter, nitrogen compounds, phosphorus, and heavy metals. The sediments included particulate matter and waste from a cattle farm located within the water catchment area of the cavity, along with diverse microorganisms, reshaping the cave microbial community. This study addresses the ongoing influence of a cattle farm on the cave ecosystem and aims to understand the adaptive responses of the underground microbial community to the sudden influx of waste allochthonous material. Here, we show that the flood event had an immediate and profound effect on the cave microbial community, marked by a significant increase in methanogenic archaea, denitrifying bacteria, and other microorganisms commonly associated with mammalian intestinal tracts. Furthermore, our findings reveal that one year after the flood, microorganisms related to the flood decreased, while the increase in inorganic forms of ammonium and nitrate suggests potential nitrification, aligning with increased abundances of corresponding functional genes involved in nitrogen cycling. The results reveal that the impact of pollution was neither recent nor isolated, and it was decisive in stopping livestock activity near the cave. The influence of the cattle farm has persisted since its establishment over the impluvium area, and this influence endures even a year after the flood. Our study emphasizes the dynamic interplay between natural events, anthropogenic activities, and microbial communities, offering insights into the resilience of cave ecosystems. Understanding microbial adaptation in response to environmental disturbances, as demonstrated in this cave ecosystem, has implications for broader ecological studies and underscores the importance of considering temporal dynamics in conservation efforts.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Spanish Geological Survey (IGME-CSIC), 28003 Madrid, Spain.
| | | | | | - Javier Elez
- Department of Geology, University of Salamanca, 37008 Salamanca, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain
| | | | - Juan Carlos Canaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
2
|
Centurion VB, Rossi A, Orellana E, Ghiotto G, Kakuk B, Morlino MS, Basile A, Zampieri G, Treu L, Campanaro S. A unified compendium of prokaryotic and viral genomes from over 300 anaerobic digestion microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:1. [PMID: 38167520 PMCID: PMC10762816 DOI: 10.1186/s40793-023-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production. RESULTS The primary objective of this study was to expand our understanding on the anaerobic digestion microbiome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other MAGs. CONCLUSIONS This study offers a more comprehensive understanding of microbial community structures that thrive at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome level and reported in public databases is higher than that of bacteria, although still quite limited. The identification of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynonymous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, temperature range and feedstock utilization.
Collapse
Affiliation(s)
| | - Alessandro Rossi
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Esteban Orellana
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Gabriele Ghiotto
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 12 Somogyi B. U. 4., Szeged, 6720, Hungary
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Arianna Basile
- MRC Toxicology Unit, University of Cambridge, Gleeson Building Tennis Court Road, Cambridge, UK
| | - Guido Zampieri
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Laura Treu
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| |
Collapse
|
3
|
Kieft B, Finke N, McLaughlin RJ, Nallan AN, Krzywinski M, Crowe SA, Hallam SJ. Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater. Nat Commun 2023; 14:5380. [PMID: 37666802 PMCID: PMC10477309 DOI: 10.1038/s41467-023-40907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Brandon Kieft
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Niko Finke
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ryan J McLaughlin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Aditi N Nallan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sean A Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
5
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Maza-Márquez P, Gallardo-Altamirano MJ, Osorio F, Pozo C, Rodelas B. Microbial indicators of efficient performance in an anaerobic/anoxic/aerobic integrated fixed-film activated sludge (A2O-IFAS) and a two-stage mesophilic anaerobic digestion process. CHEMOSPHERE 2023; 335:139164. [PMID: 37295687 DOI: 10.1016/j.chemosphere.2023.139164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
An analysis of the community structure, diversity and population dynamics of Bacteria and Archaea in the suspended and attached biomass fractions of a pilot-scale anaerobic/anoxic/aerobic integrated fixed-film activated sludge (A2O-IFAS) was executed. Along with this, the effluents of the acidogenic (AcD) and methanogenic (MD) digesters of a two-stage mesophilic anaerobic (MAD) system treating the primary sludge (PS) and waste activated sludge (WAS) generated by the A2O-IFAS were also analyzed. Non-metric multidimensional scaling (MDS) and Biota-environment (BIO-ENV) multivariate analyses were performed to link population dynamics of Bacteria and Archaea to operating parameters and removal efficiencies of organic matter and nutrients, in search of microbial indicators associated with optimal performance. In all samples analyzed, Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla, while the hydrogenotrophic methanogens Methanolinea, Methanocorpusculum and Methanobacterium were the predominant archaeal genera. BIO-ENV analysis disclosed strong correlations between the population shifts observed in the suspended and attached bacterial communities of the A2O-IFAS and the removal rates of organic matter, N and P. It is noteworthy that the incorporation of carriers combined with a short sludge retention time (SRT = 4.0 ± 1.0 days) enhanced N removal performance of the A2O by favoring the enrichment of bacterial genera able to denitrify (Bosea, Dechloromonas, Devosia, Hyphomicrobium, Rhodobacter, Rhodoplanes, Rubrivivax, and Sulfuritalea) in the attached biomass fraction. In addition, operation at short SRT enabled the generation of a highly biodegradable WAS, which enhanced the biogas and methane yields in the two-stage MAD. An increase in the relative abundance of Acetobacteroides (uncultured Blvii28 wastewater-sludge group of Rikenellaceae family) correlated positively with the volatile solids removal rate (%VSR), CH4 recovery rate and %CH4 in the biogas (r > 0.8), supporting their relevance for an efficient methanogenesis in two-stage systems.
Collapse
Affiliation(s)
- P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| | - M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, 18071, Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071, Granada, Spain
| |
Collapse
|
7
|
Strom N, Ma Y, Bi Z, Andersen D, Trabue S, Chen C, Hu B. Eubacterium coprostanoligenes and Methanoculleus identified as potential producers of metabolites that contribute to swine manure foaming. J Appl Microbiol 2021; 132:2906-2924. [PMID: 34820968 DOI: 10.1111/jam.15384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
AIM Swine manure foaming is a major problem, causing damage to property, livestock, and people. Here, we identified the main chemicals and microbes that contribute to foaming. METHODS AND RESULTS Foaming and non-foaming swine manure were sampled from farms in Iowa and Illinois. Targeted and untargeted metabolomics analyses identified chemical markers that differed between foaming and non-foaming manure and between manure layers. Microbial community analysis and metagenomics were performed on a subset of samples. Foam contained significantly higher levels of total bile acids and long chain fatty acids like palmitic, stearic and oleic acid than the other manure layers. Foam layers also had significantly higher levels of ubiquinone 9 and ubiquinone 10. The slurry layer of foaming samples contained more alanine, isoleucine/leucine, diacylglycerols (DG), phosphtatidylethanolamines, and vitamin K2, while ceramide was significantly increased in the slurry layer of non-foaming samples. Eubacterium coprostanoligenes and Methanoculleus were more abundant in foaming samples, and E. coprostanoligenes was significantly correlated with levels of DG. Genes involved in diacylglycerol biosynthesis and in the biosynthesis of branched-chain hydrophobic amino acids were overrepresented in foaming samples. CONCLUSIONS A mechanism for manure foaming is hypothesized in which proliferation of Methanoculleus leads to excessive production of methane, while production of DG by E. coprostanoligenes and hydrophobic proteins by Methanosphaera stadtmanae facilitates bubble formation and stabilization. SIGNIFICANCE AND IMPACT OF STUDY While some chemical and biological treatments have been developed to treat swine manure foaming, its causes remain unknown. We identified key microbes and metabolites that correlate with foaming and point to possible roles of other factors like animal feed.
Collapse
Affiliation(s)
- Noah Strom
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zheting Bi
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Andersen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Steve Trabue
- USDA-Agricultural Research Service, Ames, Iowa, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
The significance of microbial community functions and symbiosis in enhancing methane production during anaerobic digestion: a review. Symbiosis 2020. [DOI: 10.1007/s13199-020-00734-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|