1
|
Wani SA, Hussain S, Gray JS, Nayak D, Tang H, Perez LM, Long MD, Siddappa M, McCabe CJ, Sucheston-Campbell LE, Freeman MR, Campbell MJ. Epigenetic disruption of the RARγ complex impairs its function to bookmark AR enhancer interactions required for enzalutamide sensitivity in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571947. [PMID: 38168185 PMCID: PMC10760102 DOI: 10.1101/2023.12.15.571947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.
Collapse
Affiliation(s)
- Sajad A Wani
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Hancong Tang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Lillian M Perez
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark D Long
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263
| | - Manjunath Siddappa
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
| | | | - Michael R Freeman
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moray J Campbell
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
2
|
Schaeberle CM, Bouffard VA, Sonnenschein C, Soto AM. Modeling Mammary Organogenesis from Biological First Principles: A Systems Biology Approach. Methods Mol Biol 2024; 2745:177-188. [PMID: 38060186 DOI: 10.1007/978-1-0716-3577-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stromal-epithelial interactions mediate mammary gland development and the formation and progression of breast cancer. To study these interactions in vitro, 3D models are essential. We have successfully developed novel 3D in vitro models that allow the formation of mammary gland structures closely resembling those found in vivo and that respond to the hormonal cues that regulate mammary gland morphogenesis and function. Due to their simplicity when compared to in vivo studies, and to their accessibility to visualization in real time, these models are well suited to conceptual and mathematical modeling.
Collapse
Affiliation(s)
| | | | | | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Süli A, Magyar P, Vezér M, Bányai B, Szekeres M, Sipos M, Mátrai M, Hetthéssy JR, Dörnyei G, Ács N, Horváth EM, Nádasy GL, Várbíró S, Török M. Effects of Gender and Vitamin D on Vascular Reactivity of the Carotid Artery on a Testosterone-Induced PCOS Model. Int J Mol Sci 2023; 24:16577. [PMID: 38068901 PMCID: PMC10706740 DOI: 10.3390/ijms242316577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The negative cardiovascular effects of polycystic ovary syndrome (PCOS) and vitamin D deficiency (VDD) have been discussed previously; however, the sex differences between PCOS females and males are not yet known. Our aim was to investigate the effect of PCOS and VDD in the carotid artery of male and female Wistar rats. Females were treated with transdermal testosterone (Androgel) for 8 weeks, which caused PCOS. VDD and vitamin D supplementation were accomplished via diet. The carotid arteries' contraction and relaxation were examined using myography. Receptor density was investigated using immunohistochemistry. In PCOS females, angiotensin receptor density, angiotensin II-induced contraction, androgen receptor optical density, and testosterone-induced relaxation increased. The increased contractile response may increase cardiovascular vulnerability in women with PCOS. As an effect of VDD, estrogen receptor density increased in all our groups, which probably compensated for the reduced relaxation caused by VDD. Testosterone-induced relaxation was decreased as a result of VDD in males and non-PCOS females, whereas this reduction was absent in PCOS females. Male sex is associated with increased contraction ability compared with non-PCOS and PCOS females. VDD and Androgel treatment show significant gender differences in their effects on carotid artery reactivity. Both VDD and PCOS result in a dysfunctional vascular response, which can contribute to cardiovascular diseases.
Collapse
Affiliation(s)
- Anita Süli
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Péter Magyar
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, 1082 Budapest, Hungary;
| | - Márton Vezér
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Miklós Sipos
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Máté Mátrai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Judit Réka Hetthéssy
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
4
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Hasan N, Zhang Y, Georgakoudi I, Sonnenschein C, Soto AM. Matrix Composition Modulates Vitamin D3's Effects on 3D Collagen Fiber Organization by MCF10A Cells. Tissue Eng Part A 2021; 27:1399-1410. [PMID: 33789436 DOI: 10.1089/ten.tea.2020.0371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitamin D3 (vitD3) has been implicated in various cellular functions affecting multiple tissue types. Epidemiological and laboratory studies suggest that vitD3 may be effective as a preventive or therapeutic option for breast cancer. However, randomized clinical trials have yet to confirm these suggestions. Breast neoplasias can arise from developmental alterations; based on this evidence, we seek to understand vitD3's role in normal breast development, particularly its role in epithelial morphogenetic processes such as ductal elongation, branching, and alveolar formation. These processes require extensive changes in the extracellular microenvironment, such as collagen fiber organization, and are largely influenced by hormones. Here, we build upon our past work to shed light on calcitriol's effects on collagen fiber organization by breast epithelial cells, and how such effects are modulated by extracellular matrix composition. We embedded MCF10A normal human breast epithelial cells in two different matrices-collagen type I and collagen type I + 10% Matrigel; treatment with calcitriol resulted in flatter epithelial structures. Next, using two-photon microscopy, we examined changes in collagen fiber organization and corresponding changes in epithelial structures. Applying a novel three-dimensional (3D) image analysis method, we show that increasing doses of calcitriol result in denser collagen fiber bundles in the localized area surrounding the epithelial structures, and that these bundles are aligned in a more parallel direction to epithelial structures when exposed to the highest vitD3 dose. Changed patterns in fiber organization may explain the flattening of epithelial structures; in turn, changes in biophysical forces in the matrix abutting these structures may be responsible for changes in the referred patterns. Addition of 10% Matrigel dampened the effects of calcitriol on both epithelial morphogenesis and fiber organization. Overall, we report novel functions of calcitriol in the breast epithelium and add to the growing body of evidence documenting how hormones affect biophysical processes.
Collapse
Affiliation(s)
- Nafis Hasan
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Long-term vitamin D deficiency promotes renal fibrosis and functional impairment in middle-aged male mice. Br J Nutr 2020; 125:841-850. [PMID: 32812524 DOI: 10.1017/s0007114520003232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial-mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
Collapse
|