1
|
Ramai D, Collins B, Ofosu A, Mohan BP, Jagannath S, Tabibian JH, Girotra M, Barakat MT. Deep Learning Methods in the Imaging of Hepatic and Pancreaticobiliary Diseases. J Clin Gastroenterol 2025; 59:405-411. [PMID: 40193287 DOI: 10.1097/mcg.0000000000002125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Reports indicate a growing role for artificial intelligence (AI) in the evaluation of pancreaticobiliary and hepatic conditions. A key focus is differentiating between benign and malignant lesions, which is crucial for treatment decisions. AI improves diagnostic accuracy through high sensitivity and specificity, while CNN algorithms enhance image analysis and reduce variability. These advancements aim to match the accuracy of pathologists in cancer detection. In addition, AI aids in identifying diagnostic markers, as early detection is essential. This article reviews the applications of machine learning and deep learning in the diagnosis of hepatic and pancreaticobiliary diseases. Although the use of AI in these specialized areas of gastroenterology is primarily confined to experimental trials, current models demonstrate significant potential for enhancing the detection, evaluation, and treatment planning of hepatic and pancreaticobiliary conditions.
Collapse
Affiliation(s)
- Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT
| | - Brendan Collins
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH
| | - Andrew Ofosu
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH
| | - Babu P Mohan
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT
| | - Soumya Jagannath
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - James H Tabibian
- Division of Gastroenterology, Olive View-UCLA Medical Center, Sylmar
- David Geffen School of Medicine at UCLA, Los Angeles
| | - Mohit Girotra
- Digestive Health Institute, Swedish Medical Center, Seattle, WA
| | | |
Collapse
|
2
|
Araújo CC, Frias J, Mendes F, Martins M, Mota J, Almeida MJ, Ribeiro T, Macedo G, Mascarenhas M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers (Basel) 2025; 17:1132. [PMID: 40227709 PMCID: PMC11988021 DOI: 10.3390/cancers17071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Artificial Intelligence (AI) is transforming pancreaticobiliary endoscopy by enhancing diagnostic accuracy, procedural efficiency, and clinical outcomes. This narrative review explores AI's applications in endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), emphasizing its potential to address diagnostic and therapeutic challenges in pancreaticobiliary diseases. In EUS, AI improves pancreatic mass differentiation, malignancy prediction, and landmark recognition, demonstrating high diagnostic accuracy and outperforming traditional guidelines. In ERCP, AI facilitates precise biliary stricture identification, optimizes procedural techniques, and supports decision-making through real-time data integration, improving ampulla recognition and predicting cannulation difficulty. Additionally, predictive analytics help mitigate complications like post-ERCP pancreatitis. The future of AI in pancreaticobiliary endoscopy lies in multimodal data fusion, integrating imaging, genomic, and molecular data to enable personalized medicine. However, challenges such as data quality, external validation, clinician training, and ethical concerns-like data privacy and algorithmic bias-must be addressed to ensure safe implementation. By overcoming these challenges, AI has the potential to redefine pancreaticobiliary healthcare, improving diagnostic accuracy, therapeutic outcomes, and personalized care.
Collapse
Affiliation(s)
- Catarina Cardoso Araújo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Frias
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
3
|
VandeHaar MA, Al-Asi H, Doganay F, Yilmaz I, Alazab H, Xiao Y, Balan J, Dangott BJ, Nassar A, Reynolds JP, Akkus Z. Challenges and Opportunities in Cytopathology Artificial Intelligence. Bioengineering (Basel) 2025; 12:176. [PMID: 40001695 PMCID: PMC11851434 DOI: 10.3390/bioengineering12020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Artificial Intelligence (AI) has the potential to revolutionize cytopathology by enhancing diagnostic accuracy, efficiency, and accessibility. However, the implementation of AI in this field presents significant challenges and opportunities. This review paper explores the current landscape of AI applications in cytopathology, highlighting the critical challenges, including data quality and availability, algorithm development, integration and standardization, and clinical validation. We discuss challenges such as the limitation of only one optical section and z-stack scanning, the complexities associated with acquiring high-quality labeled data, the intricacies of developing robust and generalizable AI models, and the difficulties in integrating AI tools into existing laboratory workflows. The review also identifies substantial opportunities that AI brings to cytopathology. These include the potential for improved diagnostic accuracy through enhanced detection capabilities and consistent, reproducible results, which can reduce observer variability. AI-driven automation of routine tasks can significantly increase efficiency, allowing cytopathologists to focus on more complex analyses. Furthermore, AI can serve as a valuable educational tool, augmenting the training of cytopathologists and facilitating global health initiatives by making high-quality diagnostics accessible in resource-limited settings. The review underscores the importance of addressing these challenges to harness the full potential of AI in cytopathology, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Meredith A. VandeHaar
- Cytology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hussien Al-Asi
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Fatih Doganay
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Ibrahim Yilmaz
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Heba Alazab
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Yao Xiao
- Computational Biology, Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA; (Y.X.); (J.B.)
| | - Jagadheshwar Balan
- Computational Biology, Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA; (Y.X.); (J.B.)
| | - Bryan J. Dangott
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Aziza Nassar
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Jordan P. Reynolds
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| | - Zeynettin Akkus
- Computational Pathology and Artificial Intelligence, Department of Laboratory Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (H.A.-A.); (F.D.); (I.Y.); (H.A.); (B.J.D.); (A.N.); (J.P.R.)
| |
Collapse
|
4
|
Jain A, Pabba M, Jain A, Singh S, Ali H, Vinayek R, Aswath G, Sharma N, Inamdar S, Facciorusso A. Impact of Artificial Intelligence on Pancreaticobiliary Endoscopy. Cancers (Basel) 2025; 17:379. [PMID: 39941748 PMCID: PMC11815774 DOI: 10.3390/cancers17030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Pancreaticobiliary diseases can lead to significant morbidity and their diagnoses rely on imaging and endoscopy which are dependent on operator expertise. Artificial intelligence (AI) has seen a rapid uptake in the field of luminal endoscopy, such as polyp detection during colonoscopy. However, its use for pancreaticobiliary endoscopic modalities such as endoscopic ultrasound (EUS) and cholangioscopy remains scarce, with only few studies available. In this review, we delve into the current evidence, benefits, limitations, and future scope of AI technologies in pancreaticobiliary endoscopy.
Collapse
Affiliation(s)
- Aryan Jain
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Mayur Pabba
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Aditya Jain
- Department of Gastroenterology, Albany Medical College, Albany, NY 12208, USA; (A.J.); (M.P.); (A.J.)
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Hassam Ali
- Department of Gastroenterology, ECU Health Medical Center/Brody School of Medicine, Greenville, NC 27834, USA;
| | - Rakesh Vinayek
- Department of Gastroenterology, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA;
| | - Ganesh Aswath
- Department of Gastroenterology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA;
| | - Neil Sharma
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Sumant Inamdar
- Department of Gastroenterology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
- Clinical Effectiveness Research Group, Faculty of Medicine, Institute of Health and Society, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
5
|
Wu Y, Ramai D, Smith ER, Mega PF, Qatomah A, Spadaccini M, Maida M, Papaefthymiou A. Applications of Artificial Intelligence in Gastrointestinal Endoscopic Ultrasound: Current Developments, Limitations and Future Directions. Cancers (Basel) 2024; 16:4196. [PMID: 39766095 PMCID: PMC11674484 DOI: 10.3390/cancers16244196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/09/2025] Open
Abstract
Endoscopic ultrasound (EUS) effectively diagnoses malignant and pre-malignant gastrointestinal lesions. In the past few years, artificial intelligence (AI) has shown promising results in enhancing EUS sensitivity and accuracy, particularly for subepithelial lesions (SELs) like gastrointestinal stromal tumors (GISTs). Furthermore, AI models have shown high accuracy in predicting malignancy in gastric GISTs and distinguishing between benign and malignant intraductal papillary mucinous neoplasms (IPMNs). The utility of AI has also been applied to existing and emerging technologies involved in the performance and evaluation of EUS-guided biopsies. These advancements may improve training in EUS, allowing trainees to focus on technical skills and image interpretation. This review evaluates the current state of AI in EUS, covering imaging diagnosis, EUS-guided biopsies, and training advancements. It discusses early feasibility studies and recent developments, while also addressing the limitations and challenges. This article aims to review AI applications to EUS and its applications in clinical practice while addressing pitfalls and challenges.
Collapse
Affiliation(s)
- Yizhong Wu
- Department of Internal Medicine, Baylor Scott & White Round Rock Hospital, Round Rock, TX 78665, USA;
| | - Daryl Ramai
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric R. Smith
- Department of Internal Medicine, Baylor Scott & White Round Rock Hospital, Round Rock, TX 78665, USA;
| | - Paulo F. Mega
- Gastrointestinal Endoscopy Unit, Universidade de Sao Paulo Hospital das Clinicas, São Paulo 05403-010, Brazil
| | - Abdulrahman Qatomah
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Marcello Maida
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Enna ‘Kore’, 94100 Enna, Italy;
| | | |
Collapse
|
6
|
Agudo Castillo B, Mascarenhas M, Martins M, Mendes F, de la Iglesia D, Costa AMMPD, Esteban Fernández-Zarza C, González-Haba Ruiz M. Advancements in biliopancreatic endoscopy - A comprehensive review of artificial intelligence in EUS and ERCP. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:613-622. [PMID: 38832589 DOI: 10.17235/reed.2024.10456/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The development and implementation of artificial intelligence (AI), particularly deep learning (DL) models, has generated significant interest across various fields of gastroenterology. While research in luminal endoscopy has seen rapid translation to clinical practice with approved AI devices, its potential extends far beyond, offering promising benefits for biliopancreatic endoscopy like optical characterization of strictures during cholangioscopy or detection and classification of pancreatic lesions during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-to-date of the latest literature and available studies in this field. Serving as a comprehensive guide to the current landscape of AI in biliopancreatic endoscopy, emphasizing technological advancements, main applications, ethical considerations, and future directions for research and clinical implementation.
Collapse
Affiliation(s)
| | | | - Miguel Martins
- Gastroenterology, Centro Hospitalar Universitário de São João
| | - Francisco Mendes
- Gastroenterology, Centro Hospitalar Universitário de São João, Portugal
| | | | | | | | | |
Collapse
|
7
|
Udriștoiu AL, Podină N, Ungureanu BS, Constantin A, Georgescu CV, Bejinariu N, Pirici D, Burtea DE, Gruionu L, Udriștoiu S, Săftoiu A. Deep learning segmentation architectures for automatic detection of pancreatic ductal adenocarcinoma in EUS-guided fine-needle biopsy samples based on whole-slide imaging. Endosc Ultrasound 2024; 13:335-344. [PMID: 39802107 PMCID: PMC11723688 DOI: 10.1097/eus.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging. Given the effectiveness of U-Net in semantic segmentation, numerous variants and improvements have emerged, specifically for whole-slide imaging segmentation. Methods In this study, a comparison of 7 U-Net architecture variants was performed on 2 different datasets of EUS-guided fine-needle biopsy samples from 2 medical centers (31 and 33 whole-slide images, respectively) with different parameters and acquisition tools. The U-Net architecture variants evaluated included some that had not been previously explored for PDAC whole-slide image segmentation. The evaluation of their performance involved calculating accuracy through the mean Dice coefficient and mean intersection over union (IoU). Results The highest segmentation accuracies were obtained using Inception U-Net architecture for both datasets. PDAC tissue was segmented with the overall average Dice coefficient of 97.82% and IoU of 0.87 for Dataset 1, respectively, overall average Dice coefficient of 95.70%, and IoU of 0.79 for Dataset 2. Also, we considered the external testing of the trained segmentation models by performing the cross evaluations between the 2 datasets. The Inception U-Net model trained on Train Dataset 1 performed with the overall average Dice coefficient of 93.12% and IoU of 0.74 on Test Dataset 2. The Inception U-Net model trained on Train Dataset 2 performed with the overall average Dice coefficient of 92.09% and IoU of 0.81 on Test Dataset 1. Conclusions The findings of this study demonstrated the feasibility of utilizing artificial intelligence for assessing PDAC segmentation in whole-slide imaging, supported by promising scores.
Collapse
Affiliation(s)
| | - Nicoleta Podină
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Alina Constantin
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
| | | | - Nona Bejinariu
- REGINA MARIA Regional Laboratory, Pathological Anatomy Division, Cluj-Napoca, Romania
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Elena Burtea
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Lucian Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
| | - Stefan Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
| | - Adrian Săftoiu
- Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania
- Department of Gastroenterology and Hepatology, Elias University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Wanjari M, Mittal G, Prasad R. Personalizing neurosurgical strategies for epidermoid cysts with artificial intelligence. Neurosurg Rev 2024; 47:693. [PMID: 39327372 DOI: 10.1007/s10143-024-02907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India.
| | - Gaurav Mittal
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Roshan Prasad
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India
| |
Collapse
|
9
|
Javed N, Ghazanfar H, Balar B, Patel H. Role of Artificial Intelligence in Endoscopic Intervention: A Clinical Review. J Community Hosp Intern Med Perspect 2024; 14:37-43. [PMID: 39036586 PMCID: PMC11259475 DOI: 10.55729/2000-9666.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 07/23/2024] Open
Abstract
Gastrointestinal diseases are increasing in global prevalence. As a result, the contribution to both mortality and healthcare costs is increasing. While interventions utilizing scoping techniques or ultrasound are crucial to both the timely diagnosis and management of illness, a few limitations are associated with these techniques. Artificial intelligence, using computerized diagnoses, deep learning systems, or neural networks, is increasingly being employed in multiple aspects of medicine to improve the characteristics and outcomes of these tools. Therefore, this review aims to discuss applications of artificial intelligence in endoscopy, colonoscopy, and endoscopic ultrasound.
Collapse
Affiliation(s)
- Nismat Javed
- Department of Internal Medicine, BronxCare Health System, Bronx, NY,
USA
| | - Haider Ghazanfar
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| | - Bhavna Balar
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| | - Harish Patel
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| |
Collapse
|
10
|
Kuwahara T, Hara K, Mizuno N, Haba S, Okuno N, Fukui T, Urata M, Yamamoto Y. Current status of artificial intelligence analysis for the treatment of pancreaticobiliary diseases using endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. DEN OPEN 2024; 4:e267. [PMID: 37397344 PMCID: PMC10312781 DOI: 10.1002/deo2.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Pancreatic and biliary diseases encompass a range of conditions requiring accurate diagnosis for appropriate treatment strategies. This diagnosis relies heavily on imaging techniques like endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. Artificial intelligence (AI), including machine learning and deep learning, is becoming integral in medical imaging and diagnostics, such as the detection of colorectal polyps. AI shows great potential in diagnosing pancreatobiliary diseases. Unlike machine learning, which requires feature extraction and selection, deep learning can utilize images directly as input. Accurate evaluation of AI performance is a complex task due to varied terminologies, evaluation methods, and development stages. Essential aspects of AI evaluation involve defining the AI's purpose, choosing appropriate gold standards, deciding on the validation phase, and selecting reliable validation methods. AI, particularly deep learning, is increasingly employed in endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography diagnostics, achieving high accuracy levels in detecting and classifying various pancreatobiliary diseases. The AI often performs better than doctors, even in tasks like differentiating benign from malignant pancreatic tumors, cysts, and subepithelial lesions, identifying gallbladder lesions, assessing endoscopic retrograde cholangiopancreatography difficulty, and evaluating the biliary strictures. The potential for AI in diagnosing pancreatobiliary diseases, especially where other modalities have limitations, is considerable. However, a crucial constraint is the need for extensive, high-quality annotated data for AI training. Future advances in AI, such as large language models, promise further applications in the medical field.
Collapse
Affiliation(s)
| | - Kazuo Hara
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Nobumasa Mizuno
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Shin Haba
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Nozomi Okuno
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Toshitaka Fukui
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Minako Urata
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | | |
Collapse
|
11
|
Yin M, Lin J, Wang Y, Liu Y, Zhang R, Duan W, Zhou Z, Zhu S, Gao J, Liu L, Liu X, Gu C, Huang Z, Xu X, Xu C, Zhu J. Development and validation of a multimodal model in predicting severe acute pancreatitis based on radiomics and deep learning. Int J Med Inform 2024; 184:105341. [PMID: 38290243 DOI: 10.1016/j.ijmedinf.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Aim to establish a multimodal model for predicting severe acute pancreatitis (SAP) using machine learning (ML) and deep learning (DL). METHODS In this multicentre retrospective study, patients diagnosed with acute pancreatitis at admission were enrolled from January 2017 to December 2021. Clinical information within 24 h and CT scans within 72 h of admission were collected. First, we trained Model α based on clinical features selected by least absolute shrinkage and selection operator analysis. Second, radiomics features were extracted from 3D-CT scans and Model β was developed on the features after dimensionality reduction using principal component analysis. Third, Model γ was trained on 2D-CT images. Lastly, a multimodal model, namely PrismSAP, was constructed based on aforementioned features in the training set. The predictive accuracy of PrismSAP was verified in the validation and internal test sets and further validated in the external test set. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, recall, precision and F1-score. RESULTS A total of 1,221 eligible patients were randomly split into a training set (n = 864), a validation set (n = 209) and an internal test set (n = 148). Data of 266 patients were for external testing. In the external test set, PrismSAP performed best with the highest AUC of 0.916 (0.873-0.960) among all models [Model α: 0.709 (0.618-0.800); Model β: 0.749 (0.675-0.824); Model γ: 0.687 (0.592-0.782); MCTSI: 0.778 (0.698-0.857); RANSON: 0.642 (0.559-0.725); BISAP: 0.751 (0.668-0.833); SABP: 0.710 (0.621-0.798)]. CONCLUSION The proposed multimodal model outperformed any single-modality models and traditional scoring systems.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213299, China
| | - Yuanjun Liu
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Rufa Zhang
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, the People's Hospital of Hunan Province, Changsha, Hunan 410002, China
| | - Zhirun Zhou
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shiqi Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jingwen Gao
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Chenqi Gu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhou Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodan Xu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China.
| | - Chunfang Xu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China.
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
12
|
Mukherjee S, Korfiatis P, Patnam NG, Trivedi KH, Karbhari A, Suman G, Fletcher JG, Goenka AH. Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods. Abdom Radiol (NY) 2024; 49:964-974. [PMID: 38175255 DOI: 10.1007/s00261-023-04127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To evaluate robustness of a radiomics-based support vector machine (SVM) model for detection of visually occult PDA on pre-diagnostic CTs by simulating common variations in image acquisition and radiomics workflow using image perturbation methods. METHODS Eighteen algorithmically generated-perturbations, which simulated variations in image noise levels (σ, 2σ, 3σ, 5σ), image rotation [both CT image and the corresponding pancreas segmentation mask by 45° and 90° in axial plane], voxel resampling (isotropic and anisotropic), gray-level discretization [bin width (BW) 32 and 64)], and pancreas segmentation (sequential erosions by 3, 4, 6, and 8 pixels and dilations by 3, 4, and 6 pixels from the boundary), were introduced to the original (unperturbed) test subset (n = 128; 45 pre-diagnostic CTs, 83 control CTs with normal pancreas). Radiomic features were extracted from pancreas masks of these additional test subsets, and the model's performance was compared vis-a-vis the unperturbed test subset. RESULTS The model correctly classified 43 out of 45 pre-diagnostic CTs and 75 out of 83 control CTs in the unperturbed test subset, achieving 92.2% accuracy and 0.98 AUC. Model's performance was unaffected by a three-fold increase in noise level except for sensitivity declining to 80% at 3σ (p = 0.02). Performance remained comparable vis-a-vis the unperturbed test subset despite variations in image rotation (p = 0.99), voxel resampling (p = 0.25-0.31), change in gray-level BW to 32 (p = 0.31-0.99), and erosions/dilations up to 4 pixels from the pancreas boundary (p = 0.12-0.34). CONCLUSION The model's high performance for detection of visually occult PDA was robust within a broad range of clinically relevant variations in image acquisition and radiomics workflow.
Collapse
Affiliation(s)
- Sovanlal Mukherjee
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Panagiotis Korfiatis
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Nandakumar G Patnam
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Kamaxi H Trivedi
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Aashna Karbhari
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Garima Suman
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA
| | - Ajit H Goenka
- Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Tharrun Daniel Paul L, Munuswamy-Ramanujam G, Kumar RCS, Ramachandran V, Gnanasampanthapandian D, Palaniyandi K. Recent advancement in molecular markers of pancreatic cancer. BIOMARKERS IN CANCER DETECTION AND MONITORING OF THERAPEUTICS 2024:121-149. [DOI: 10.1016/b978-0-323-95114-2.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
15
|
Korfiatis P, Suman G, Patnam NG, Trivedi KH, Karbhari A, Mukherjee S, Cook C, Klug JR, Patra A, Khasawneh H, Rajamohan N, Fletcher JG, Truty MJ, Majumder S, Bolan CW, Sandrasegaran K, Chari ST, Goenka AH. Automated Artificial Intelligence Model Trained on a Large Data Set Can Detect Pancreas Cancer on Diagnostic Computed Tomography Scans As Well As Visually Occult Preinvasive Cancer on Prediagnostic Computed Tomography Scans. Gastroenterology 2023; 165:1533-1546.e4. [PMID: 37657758 PMCID: PMC10843414 DOI: 10.1053/j.gastro.2023.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND & AIMS The aims of our case-control study were (1) to develop an automated 3-dimensional (3D) Convolutional Neural Network (CNN) for detection of pancreatic ductal adenocarcinoma (PDA) on diagnostic computed tomography scans (CTs), (2) evaluate its generalizability on multi-institutional public data sets, (3) its utility as a potential screening tool using a simulated cohort with high pretest probability, and (4) its ability to detect visually occult preinvasive cancer on prediagnostic CTs. METHODS A 3D-CNN classification system was trained using algorithmically generated bounding boxes and pancreatic masks on a curated data set of 696 portal phase diagnostic CTs with PDA and 1080 control images with a nonneoplastic pancreas. The model was evaluated on (1) an intramural hold-out test subset (409 CTs with PDA, 829 controls); (2) a simulated cohort with a case-control distribution that matched the risk of PDA in glycemically defined new-onset diabetes, and Enriching New-Onset Diabetes for Pancreatic Cancer score ≥3; (3) multi-institutional public data sets (194 CTs with PDA, 80 controls), and (4) a cohort of 100 prediagnostic CTs (i.e., CTs incidentally acquired 3-36 months before clinical diagnosis of PDA) without a focal mass, and 134 controls. RESULTS Of the CTs in the intramural test subset, 798 (64%) were from other hospitals. The model correctly classified 360 CTs (88%) with PDA and 783 control CTs (94%), with a mean accuracy 0.92 (95% CI, 0.91-0.94), area under the receiver operating characteristic (AUROC) curve of 0.97 (95% CI, 0.96-0.98), sensitivity of 0.88 (95% CI, 0.85-0.91), and specificity of 0.95 (95% CI, 0.93-0.96). Activation areas on heat maps overlapped with the tumor in 350 of 360 CTs (97%). Performance was high across tumor stages (sensitivity of 0.80, 0.87, 0.95, and 1.0 on T1 through T4 stages, respectively), comparable for hypodense vs isodense tumors (sensitivity: 0.90 vs 0.82), different age, sex, CT slice thicknesses, and vendors (all P > .05), and generalizable on both the simulated cohort (accuracy, 0.95 [95% 0.94-0.95]; AUROC curve, 0.97 [95% CI, 0.94-0.99]) and public data sets (accuracy, 0.86 [95% CI, 0.82-0.90]; AUROC curve, 0.90 [95% CI, 0.86-0.95]). Despite being exclusively trained on diagnostic CTs with larger tumors, the model could detect occult PDA on prediagnostic CTs (accuracy, 0.84 [95% CI, 0.79-0.88]; AUROC curve, 0.91 [95% CI, 0.86-0.94]; sensitivity, 0.75 [95% CI, 0.67-0.84]; and specificity, 0.90 [95% CI, 0.85-0.95]) at a median 475 days (range, 93-1082 days) before clinical diagnosis. CONCLUSIONS This automated artificial intelligence model trained on a large and diverse data set shows high accuracy and generalizable performance for detection of PDA on diagnostic CTs as well as for visually occult PDA on prediagnostic CTs. Prospective validation with blood-based biomarkers is warranted to assess the potential for early detection of sporadic PDA in high-risk individuals.
Collapse
Affiliation(s)
| | - Garima Suman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Cole Cook
- Division of Medical Imaging Technology Services, Mayo Clinic, Rochester, Minnesota
| | - Jason R Klug
- Division of Medical Imaging Technology Services, Mayo Clinic, Rochester, Minnesota
| | - Anurima Patra
- Department of Radiology, Tata Medical Center, Kolkata, India
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Shounak Majumder
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Suresh T Chari
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
16
|
Ning K, Salamone A, Manos L, Lafaro KJ, Afghani E. Serous Cystadenoma: A Review on Diagnosis and Management. J Clin Med 2023; 12:7306. [PMID: 38068358 PMCID: PMC10707442 DOI: 10.3390/jcm12237306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 05/02/2025] Open
Abstract
Incidental pancreatic cysts are highly prevalent, with management dependent on the risk of malignant progression. Serous cystadenomas (SCAs) are the most common benign pancreatic cysts seen on imaging. They have typical morphological patterns but may also show atypical features that mimic precancerous and cancerous cysts. If a confident diagnosis of SCA is made, no further follow-up is warranted. Therefore, a preoperative distinction between SCA and precancerous or cancerous lesions is critically essential. Distinguishing an SCA from other types of pancreatic cysts on imaging remains a challenge, thus leading to misdiagnosis and ramifications. This review summarizes the current evidence on diagnosing and managing SCA.
Collapse
Affiliation(s)
- Kylie Ning
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.N.)
| | - Ashley Salamone
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.N.)
| | - Lindsey Manos
- Division of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA (K.J.L.)
| | - Kelly J. Lafaro
- Division of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA (K.J.L.)
| | - Elham Afghani
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.N.)
| |
Collapse
|
17
|
Jiang J, Chao WL, Cao T, Culp S, Napoléon B, El-Dika S, Machicado JD, Pannala R, Mok S, Luthra AK, Akshintala VS, Muniraj T, Krishna SG. Improving Pancreatic Cyst Management: Artificial Intelligence-Powered Prediction of Advanced Neoplasms through Endoscopic Ultrasound-Guided Confocal Endomicroscopy. Biomimetics (Basel) 2023; 8:496. [PMID: 37887627 PMCID: PMC10604893 DOI: 10.3390/biomimetics8060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the increasing rate of detection of incidental pancreatic cystic lesions (PCLs), current standard-of-care methods for their diagnosis and risk stratification remain inadequate. Intraductal papillary mucinous neoplasms (IPMNs) are the most prevalent PCLs. The existing modalities, including endoscopic ultrasound and cyst fluid analysis, only achieve accuracy rates of 65-75% in identifying carcinoma or high-grade dysplasia in IPMNs. Furthermore, surgical resection of PCLs reveals that up to half exhibit only low-grade dysplastic changes or benign neoplasms. To reduce unnecessary and high-risk pancreatic surgeries, more precise diagnostic techniques are necessary. A promising approach involves integrating existing data, such as clinical features, cyst morphology, and data from cyst fluid analysis, with confocal endomicroscopy and radiomics to enhance the prediction of advanced neoplasms in PCLs. Artificial intelligence and machine learning modalities can play a crucial role in achieving this goal. In this review, we explore current and future techniques to leverage these advanced technologies to improve diagnostic accuracy in the context of PCLs.
Collapse
Affiliation(s)
- Joanna Jiang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Troy Cao
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bertrand Napoléon
- Department of Gastroenterology, Jean Mermoz Private Hospital, 69008 Lyon, France
| | - Samer El-Dika
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA
| | - Jorge D. Machicado
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Pannala
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Shaffer Mok
- Division of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anjuli K. Luthra
- Division of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Venkata S. Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Thiruvengadam Muniraj
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Khozeymeh F, Ariamanesh M, Roshan NM, Jafarian A, Farzanehfar M, Majd HM, Sedghian A, Dehghani M. Comparison of FNA-based conventional cytology specimens and digital image analysis in assessment of pancreatic lesions. Cytojournal 2023; 20:39. [PMID: 37942305 PMCID: PMC10629281 DOI: 10.25259/cytojournal_61_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/05/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is one of the most important diagnostic tools for investigation of suspected pancreatic masses, although the interpretation of the results is controversial. In recent decades, digital image analysis (DIA) has been considered in pathology. The aim of this study was to assess the DIA in the evaluation of EUS-FNA based cytopathological specimens of pancreatic masses and comparing it with conventional cytology analysis by pathologist. Material and Methods This study was performed using cytological slides related to EUS-FNA samples of pancreatic lesions. The digital images were prepared and then analyzed by ImageJ software. Factors such as perimeter, circularity, area, minimum, maximum, mean, median of gray value, and integrated chromatin density of cell nucleus were extracted by software ImageJ and sensitivity, specificity, and cutoff point were evaluated in the diagnosis of malignant and benign lesions. Results In this retrospective study, 115 cytology samples were examined. Each specimen was reviewed by a pathologist and 150 images were prepared from the benign and malignant lesions and then analyzed by ImageJ software and a cut point was established by SPSS 26. The cutoff points for perimeter, integrated density, and the sum of three factors of perimeter, integrated density, and circularity to differentiate between malignant and benign lesions were reported to be 204.56, 131953, and 24643077, respectively. At this cutting point, the accuracy of estimation is based on the factors of perimeter, integrated density, and the sum of the three factors of perimeter, integrated density, and circularity were 92%, 92%, and 94%, respectively. Conclusion The results of this study showed that digital analysis of images has a high accuracy in diagnosing malignant and benign lesions in the cytology of EUS-FNA in patients with suspected pancreatic malignancy and by obtaining cutoff points by software output factors; digital imaging can be used to differentiate between benign and malignant pancreatic tumors.
Collapse
Affiliation(s)
- Farzaneh Khozeymeh
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Ariamanesh
- Department of Pathology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | | | | | - Hassan Mehrad Majd
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sedghian
- Department of Computer, Ferdowsi University of Engineering, Mashhad, Iran
| | - Mansoureh Dehghani
- Department of Oncology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Khalaf K, Terrin M, Jovani M, Rizkala T, Spadaccini M, Pawlak KM, Colombo M, Andreozzi M, Fugazza A, Facciorusso A, Grizzi F, Hassan C, Repici A, Carrara S. A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound. J Clin Med 2023; 12:3757. [PMID: 37297953 PMCID: PMC10253269 DOI: 10.3390/jcm12113757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. METHODS AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. RESULTS AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. CONCLUSIONS The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies.
Collapse
Affiliation(s)
- Kareem Khalaf
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Maria Terrin
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Manol Jovani
- Division of Gastroenterology, Maimonides Medical Center, SUNY Downstate University, Brooklyn, NY 11219, USA;
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Marco Spadaccini
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Katarzyna M. Pawlak
- Division of Gastroenterology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada; (K.K.); (K.M.P.)
| | - Matteo Colombo
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Marta Andreozzi
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Alessandro Fugazza
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy;
| | - Cesare Hassan
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Alessandro Repici
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy;
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Humanitas Research Hospital IRCCS, Rozzano, 20089 Milan, Italy; (M.T.); (M.S.); (M.C.); (M.A.); (A.F.); (C.H.); (A.R.)
| |
Collapse
|
20
|
Lee TC, Angelina CL, Kongkam P, Wang HP, Rerknimitr R, Han ML, Chang HT. Deep-Learning-Enabled Computer-Aided Diagnosis in the Classification of Pancreatic Cystic Lesions on Confocal Laser Endomicroscopy. Diagnostics (Basel) 2023; 13:diagnostics13071289. [PMID: 37046507 PMCID: PMC10093377 DOI: 10.3390/diagnostics13071289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Accurate classification of pancreatic cystic lesions (PCLs) is important to facilitate proper treatment and to improve patient outcomes. We utilized the convolutional neural network (CNN) of VGG19 to develop a computer-aided diagnosis (CAD) system in the classification of subtypes of PCLs in endoscopic ultrasound-guided needle-based confocal laser endomicroscopy (nCLE). From a retrospectively collected 22,424 nCLE video frames (50 videos) as the training/validation set and 11,047 nCLE video frames (18 videos) as the test set, we developed and compared the diagnostic performance of three CNNs with distinct methods of designating the region of interest. The diagnostic accuracy for subtypes of PCLs by CNNs with manual, maximal rectangular, and U-Net algorithm-designated ROIs was 100%, 38.9%, and 66.7% on a per-video basis and 88.99%, 73.94%, and 76.12% on a per-frame basis, respectively. Our per-frame analysis suggested differential levels of diagnostic accuracy among the five subtypes of PCLs, where non-mucinous PCLs (serous cystic neoplasm: 93.11%, cystic neuroendocrine tumor: 84.31%, and pseudocyst: 98%) had higher diagnostic accuracy than mucinous PCLs (intraductal papillary mucinous neoplasm: 84.43% and mucinous cystic neoplasm: 86.1%). Our CNN demonstrated superior specificity compared to the state-of-the-art for the classification of mucinous PCLs (IPMN and MCN), with high specificity (94.3% and 92.8%, respectively) but low sensitivity (46% and 45.2%, respectively). This suggests the complimentary role of CNN-enabled CAD systems, especially for clinically suspected mucinous PCLs.
Collapse
Affiliation(s)
- Tsung-Chun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Clara Lavita Angelina
- Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Pradermchai Kongkam
- Excellent Center for Gastrointestinal Endoscopy and Division of Gastroenterology, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Pancreas Research Unit, Division of Hospital and Ambulatory Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hsiu-Po Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 10002, Taiwan
| | - Rungsun Rerknimitr
- Excellent Center for Gastrointestinal Endoscopy and Division of Gastroenterology, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ming-Lun Han
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsuan-Ting Chang
- Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
21
|
Sugimoto Y, Kurita Y, Kuwahara T, Satou M, Meguro K, Hosono K, Kubota K, Hara K, Nakajima A. Diagnosing malignant distal bile duct obstruction using artificial intelligence based on clinical biomarkers. Sci Rep 2023; 13:3262. [PMID: 36828831 PMCID: PMC9958195 DOI: 10.1038/s41598-023-28058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/26/2023] Open
Abstract
Diagnosing distal bile duct obstruction remains challenging. This study aimed to examine the diagnostic ability of artificial intelligence (AI) based on clinical biomarkers in diagnosing malignant distal bile duct obstruction. A total of 206 patients with distal bile duct obstruction were included in this study. Clinical laboratory parameters were collected from the patients and evaluated using AI. All clinical parameters were input into the AI algorithm, and the AI value for malignant distal bile duct obstruction was calculated. The benign and malignant diagnostic capabilities of AI and other factors (alkaline phosphatase [ALP], intrahepatic bile duct [IHBD] diameters, and total bile duct [CBD] diameters) were compared. Benign and malignant bile duct obstruction were diagnosed in 142 and 64 patients, respectively. The median AI value of malignant distal bile duct obstruction was significantly greater than that of benign distal bile duct obstruction (0.991 vs. 0.002, p < 0.001). The area under the receiver operating characteristic curve of AI, ALP, IHBD diameter, and CBD diameter were 0.908, 0.795, 0.794, and 0.775, respectively. AI showed a sensitivity, specificity, and accuracy of 83.1%, 87.2%, and 85.9%. AI-based on clinical biomarkers could serve as an auxiliary for diagnosing malignant bile duct obstruction.
Collapse
Affiliation(s)
- Yuichi Sugimoto
- Department of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Yusuke Kurita
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan.
| | - Takamichi Kuwahara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Motokazu Satou
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Koki Meguro
- Department of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kensuke Kubota
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Park HJ, Shin K, You MW, Kyung SG, Kim SY, Park SH, Byun JH, Kim N, Kim HJ. Deep Learning-based Detection of Solid and Cystic Pancreatic Neoplasms at Contrast-enhanced CT. Radiology 2023; 306:140-149. [PMID: 35997607 DOI: 10.1148/radiol.220171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Deep learning (DL) may facilitate the diagnosis of various pancreatic lesions at imaging. Purpose To develop and validate a DL-based approach for automatic identification of patients with various solid and cystic pancreatic neoplasms at abdominal CT and compare its diagnostic performance with that of radiologists. Materials and Methods In this retrospective study, a three-dimensional nnU-Net-based DL model was trained using the CT data of patients who underwent resection for pancreatic lesions between January 2014 and March 2015 and a subset of patients without pancreatic abnormality who underwent CT in 2014. Performance of the DL-based approach to identify patients with pancreatic lesions was evaluated in a temporally independent cohort (test set 1) and a temporally and spatially independent cohort (test set 2) and was compared with that of two board-certified radiologists. Performance was assessed using receiver operating characteristic analysis. Results The study included 852 patients in the training set (median age, 60 years [range, 19-85 years]; 462 men), 603 patients in test set 1 (median age, 58 years [range, 18-82 years]; 376 men), and 589 patients in test set 2 (median age, 63 years [range, 18-99 years]; 343 men). In test set 1, the DL-based approach had an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.94) and showed slightly worse performance in test set 2 (AUC, 0.87 [95% CI: 0.84, 0.89]). The DL-based approach showed high sensitivity in identifying patients with solid lesions of any size (98%-100%) or cystic lesions measuring 1.0 cm or larger (92%-93%), which was comparable with the radiologists (95%-100% for solid lesions [P = .51 to P > .99]; 93%-98% for cystic lesions ≥1.0 cm [P = .38 to P > .99]). Conclusion The deep learning-based approach demonstrated high performance in identifying patients with various solid and cystic pancreatic lesions at CT. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hyo Jung Park
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Keewon Shin
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Myung-Won You
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Sung-Gu Kyung
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - So Yeon Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Seong Ho Park
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Jae Ho Byun
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Namkug Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| | - Hyoung Jung Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., S.Y.K., S.H.P., J.H.B., H.J.K.) and Department of Bioengineering, Asan Medical Institute of Convergence Science and Technology (K.S., S.G.K., N.K.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; and Department of Radiology, Kyung Hee University Hospital, Seoul, Republic of Korea (M.W.Y.)
| |
Collapse
|
24
|
Turner RC, Melnychuk JT, Chen W, Jones D, Krishna SG. Molecular Analysis of Pancreatic Cyst Fluid for the Management of Intraductal Papillary Mucinous Neoplasms. Diagnostics (Basel) 2022; 12:2573. [PMID: 36359417 PMCID: PMC9689264 DOI: 10.3390/diagnostics12112573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer is one of the most lethal human cancers. Early detection and diagnosis of precursor lesions for pancreatic malignancy is essential to improve the morbidity and mortality associated with this diagnosis. Of the cystic precursor lesions, branch duct intraductal papillary mucinous neoplasm (IPMN) is the most frequently identified lesion and has a wide range of malignant potential. Currently, Carcinogenic embryonic antigen (CEA) levels in the cyst fluid and cytology are the two most often utilized tools to diagnose these lesions; however, their diagnostic and risk stratification capabilities are somewhat limited. Within the last decade, the use of endoscopic ultrasound-guided fine-needle aspiration has opened the door for molecular analysis of cystic fluid as an option to enhance both the diagnosis and risk stratification of these lesions. The first step is to differentiate branch duct IPMNs from other lesions. KRAS and GNAS alterations have been shown to be accurate markers for this purpose. Following cyst type identification, mutational analysis, telomere fusion, microRNAs, long non-coding RNA, and DNA methylation have been identified as potential targets for stratifying malignant potential using the cystic fluid. In this review, we will examine the various targets of cyst fluid molecular analysis and their utility in the diagnosis and risk stratification of branch duct IPMNs.
Collapse
Affiliation(s)
- Ronald C. Turner
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Wei Chen
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Department of Gastroenterology, The Ohio State University, Columbus, OH 43210, USA
- Division of Gastroenterology, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
26
|
Pușcașu CI, Rimbaş M, Mateescu RB, Larghi A, Cauni V. Advances in the Diagnosis of Pancreatic Cystic Lesions. Diagnostics (Basel) 2022; 12:diagnostics12081779. [PMID: 35892490 PMCID: PMC9394320 DOI: 10.3390/diagnostics12081779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cystic lesions (PCLs) are a heterogenous group of lesions ranging from benign to malignant. There has been an increase in PCLs prevalence in recent years, mostly due to advances in imaging techniques, increased awareness of their existence and population aging. Reliable discrimination between neoplastic and non-neoplastic cystic lesions is paramount to ensuring adequate treatment and follow-up. Although conventional diagnostic techniques such as ultrasound (US), magnetic resonance imaging (MRI) and computer tomography (CT) can easily identify these lesions, assessing the risk of malignancy is limited. Endoscopic ultrasound (EUS) is superior to cross-sectional imaging in identifying potentially malignant lesions due to its high resolution and better imaging characteristics, and the advantage of allowing for cyst fluid sampling via fine-needle aspiration (FNA). More complex testing, such as cytological and histopathological analysis and biochemical and molecular testing of the aspirated fluid, can ensure an accurate diagnosis.
Collapse
Affiliation(s)
- Claudia Irina Pușcașu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.I.P.); (R.B.M.)
| | - Mihai Rimbaş
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.I.P.); (R.B.M.)
- Department of Internal Medicine, Carol Davila University of Medicine, 050474 Bucharest, Romania
- Correspondence: ; Tel.: +40-723-232-052
| | - Radu Bogdan Mateescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania; (C.I.P.); (R.B.M.)
- Department of Internal Medicine, Carol Davila University of Medicine, 050474 Bucharest, Romania
| | - Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Victor Cauni
- Urology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| |
Collapse
|
27
|
Guo WL, Geng AK, Geng C, Wang J, Dai YK. Combination of UNet++ and ResNeSt to classify chronic inflammation of the choledochal cystic wall in patients with pancreaticobiliary maljunction. Br J Radiol 2022; 95:20201189. [PMID: 35451311 PMCID: PMC10996311 DOI: 10.1259/bjr.20201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The aim of this study was to establish an automatic classification model for chronic inflammation of the choledoch wall using deep learning with CT images in patients with pancreaticobiliary maljunction (PBM). METHODS CT images were obtained from 76 PBM patients, including 61 cases assigned to the training set and 15 cases assigned to the testing set. The region of interest (ROI) containing the choledochal lesion was extracted and segmented using the UNet++ network. The degree of severity of inflammation in the choledochal wall was initially classified using the ResNeSt network. The final classification result was determined per decision rules. Grad-CAM was used to explain the association between the classification basis of the network and clinical diagnosis. RESULTS Segmentation of the lesion on the common bile duct wall was roughly obtained with the UNet++ segmentation model and the average value of Dice coefficient of the segmentation model in the testing set was 0.839 ± 0.150, which was verified through fivefold cross-validation. Inflammation was initially classified with ResNeSt18, which resulted in accuracy = 0.756, sensitivity = 0.611, specificity = 0.852, precision = 0.733, and area under curve (AUC) = 0.711. The final classification sensitivity was 0.8. Grad-CAM revealed similar distribution of inflammation of the choledochal wall and verified the inflammation classification. CONCLUSIONS By combining the UNet++ network and the ResNeSt network, we achieved automatic classification of chronic inflammation of the choledoch in PBM patients and verified the robustness through cross-validation performed five times. This study provided an important basis for classification of inflammation severity of the choledoch in PBM patients. ADVANCES IN KNOWLEDGE We combined the UNet++ network and the ResNeSt network to achieve automatic classification of chronic inflammation of the choledoch in PBM. These results provided an important basis for classification of choledochal inflammation in PBM and for surgical therapy.
Collapse
Affiliation(s)
- Wan-liang Guo
- Department of Radiology, Children’s Hospital of Soochow
University, Suzhou,
China
| | - An-kang Geng
- School of Biomedical Engineering (Suzhou), Division of Life
Sciences and Medicine, University of Science and Technology of China, 88
Keling Road, Suzhou,
China
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Chen Geng
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Jian Wang
- Pediatric Surgery, Children’s Hospital of Soochow
University, Suzhou,
China
| | - Ya-kang Dai
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co.
LTD, Jinan,
China
| |
Collapse
|
28
|
Wang X, Sun Z, Xue H, Qu T, Cheng S, Li J, Li Y, Mao L, Li X, Zhu L, Li X, Zhang L, Jin Z, Yu Y. A deep learning algorithm to improve readers' interpretation and speed of pancreatic cystic lesions on dual-phase enhanced CT. Abdom Radiol (NY) 2022; 47:2135-2147. [PMID: 35344077 DOI: 10.1007/s00261-022-03479-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a deep learning model (DLM) to improve readers' interpretation and speed in the differentiation of pancreatic cystic lesions (PCLs) on dual-phase enhanced CT, and a low contrast media dose, external testing set validated the model. MATERIALS AND METHODS Dual-phase enhanced CT images of 363 patients with 368 PCLs obtained from two centers were retrospectively assessed. Based on the examination date, a training and validation set of 266 PCLs, an internal testing set of 52 PCLs were designated from center 1. An external testing set included 50 PCLs from center 2. Clinical and radiological characteristics were compared. The DLM was developed using 3D specially designed densely connected convolutional networks for PCL differentiation. Radiomic features were extracted to build a traditional radiomics model (RM). Performance of the DLM, traditional RM, and three readers was compared. RESULTS The accuracy for differential diagnosis was 0.904 with DLM, which was the highest in the internal testing set. Accuracy differences between the DLM and senior radiologist were not significant both in the internal and external testing set (both p > 0.05). With the help of the DLM, the accuracy and specificity of the junior radiologist were significantly improved (all p < 0.05), and all readers' diagnostic time was shortened (all p < 0.05). CONCLUSION The DLM achieved senior radiologist-level performance in differentiating benign and malignant PCLs which could improve the junior radiologist's interpretation and speed of PCLs on CT.
Collapse
Affiliation(s)
- Xiheng Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Zhaoyong Sun
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Taiping Qu
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Juan Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yatong Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Li Mao
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Xiuli Li
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| | - Liang Zhu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xiao Li
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Longjing Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Yizhou Yu
- Deepwise AI Lab, Deepwise Inc., Beijing, 100080, People's Republic of China
| |
Collapse
|
29
|
Simsek C, Lee LS. Machine learning in endoscopic ultrasonography and the pancreas: The new frontier? Artif Intell Gastroenterol 2022; 3:54-65. [DOI: 10.35712/aig.v3.i2.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic diseases have a substantial burden on society which is predicted to increase further over the next decades. Endoscopic ultrasonography (EUS) remains the best available diagnostic method to assess the pancreas, however, there remains room for improvement. Artificial intelligence (AI) approaches have been adopted to assess pancreatic diseases for over a decade, but this methodology has recently reached a new era with the innovative machine learning algorithms which can process, recognize, and label endosonographic images. Our review provides a targeted summary of AI in EUS for pancreatic diseases. Included studies cover a wide spectrum of pancreatic diseases from pancreatic cystic lesions to pancreatic masses and diagnosis of pancreatic cancer, chronic pancreatitis, and autoimmune pancreatitis. For these, AI models seemed highly successful, although the results should be evaluated carefully as the tasks, datasets and models were greatly heterogenous. In addition to use in diagnostics, AI was also tested as a procedural real-time assistant for EUS-guided biopsy as well as recognition of standard pancreatic stations and labeling anatomical landmarks during routine examination. Studies thus far have suggested that the adoption of AI in pancreatic EUS is highly promising and further opportunities should be explored in the field.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Linda S Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
30
|
Shipley LC, Ahmed AM. New and emerging technology in the diagnosis and treatment of pancreatic cysts. Transl Gastroenterol Hepatol 2022; 7:15. [PMID: 35548473 PMCID: PMC9081918 DOI: 10.21037/tgh-2020-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/05/2020] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cysts have always presented as a diagnostic dilemma due to the difficulties in identifying patients with current imaging modalities that could most benefit from surgical intervention. Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystadenomas (MCNs) carry the highest malignant potential of all pancreatic cysts and pancreatic adenocarcinoma carries a high mortality as the fourth leading cause of cancer-related deaths. However, surgery to remove benign cysts also carries a high morbidity and occasional mortality. Opportunities to identify and reduce pre-cancer lesions must be aggressively pursued. Multidetector helical CT (MDHCT) or an up-to-date MRI is the first diagnostic tool to evaluate a suspected pancreatic lesion. Currently, review by a multidisciplinary group who specialize in pancreatic cysts and pancreatic cancer is advised to review factors such as a patient's comorbidities, the type of surgery needed to remove the cyst and the estimated morbidity and mortality associated with the procedure. Some recent data are emerging to assist with identifying those at highest risk such as cyst fluid analysis, laser endomicroscopy, and artificial intelligence (AI). This article reviews the current status, benefits, challenges and future prospects on diagnosis and treatment of pancreatic cysts. Further prospective randomized control trials are needed to determine the optimal management and treatment for patients with pancreatic cysts.
Collapse
Affiliation(s)
- Lindsey C. Shipley
- Department of Internal Medicine, University of Alabama, Birmingham, AL, USA
| | - Ali M. Ahmed
- Division of Gastroenterology and Hepatology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
31
|
Shreve JT, Khanani SA, Haddad TC. Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations. Am Soc Clin Oncol Educ Book 2022; 42:1-10. [PMID: 35687826 DOI: 10.1200/edbk_350652] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The promise of highly personalized oncology care using artificial intelligence (AI) technologies has been forecasted since the emergence of the field. Cumulative advances across the science are bringing this promise to realization, including refinement of machine learning- and deep learning algorithms; expansion in the depth and variety of databases, including multiomics; and the decreased cost of massively parallelized computational power. Examples of successful clinical applications of AI can be found throughout the cancer continuum and in multidisciplinary practice, with computer vision-assisted image analysis in particular having several U.S. Food and Drug Administration-approved uses. Techniques with emerging clinical utility include whole blood multicancer detection from deep sequencing, virtual biopsies, natural language processing to infer health trajectories from medical notes, and advanced clinical decision support systems that combine genomics and clinomics. Substantial issues have delayed broad adoption, with data transparency and interpretability suffering from AI's "black box" mechanism, and intrinsic bias against underrepresented persons limiting the reproducibility of AI models and perpetuating health care disparities. Midfuture projections of AI maturation involve increasing a model's complexity by using multimodal data elements to better approximate an organic system. Far-future positing includes living databases that accumulate all aspects of a person's health into discrete data elements; this will fuel highly convoluted modeling that can tailor treatment selection, dose determination, surveillance modality and schedule, and more. The field of AI has had a historical dichotomy between its proponents and detractors. The successful development of recent applications, and continued investment in prospective validation that defines their impact on multilevel outcomes, has established a momentum of accelerated progress.
Collapse
Affiliation(s)
| | | | - Tufia C Haddad
- Department of Oncology, Mayo Clinic, Rochester, MN.,Center for Digital Health, Mayo Clinic, Rochester, MN
| |
Collapse
|
32
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
33
|
Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples. Sci Rep 2022; 12:1855. [PMID: 35115624 PMCID: PMC8814152 DOI: 10.1038/s41598-022-05913-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
We aimed to develop an explainable and reliable method to diagnose cysts and tumors of the jaw with massive panoramic radiographs of healthy peoples based on deep learning, since collecting and labeling massive lesion samples are time-consuming, and existing deep learning-based methods lack explainability. Based on the collected 872 lesion samples and 10,000 healthy samples, a two-branch network was proposed for classifying the cysts and tumors of the jaw. The two-branch network is firstly pretrained on massive panoramic radiographs of healthy peoples, then is trained for classifying the sample categories and segmenting the lesion area. Totally, 200 healthy samples and 87 lesion samples were included in the testing stage. The average accuracy, precision, sensitivity, specificity, and F1 score of classification are 88.72%, 65.81%, 66.56%, 92.66%, and 66.14%, respectively. The average accuracy, precision, sensitivity, specificity, and F1 score of classification will reach 90.66%, 85.23%, 84.27%, 93.50%, and 84.74%, if only classifying the lesion samples and healthy samples. The proposed method showed encouraging performance in the diagnosis of cysts and tumors of the jaw. The classified categories and segmented lesion areas serve as the diagnostic basis for further diagnosis, which provides a reliable tool for diagnosing jaw tumors and cysts.
Collapse
|
34
|
Glissen Brown JR, Waljee AK, Mori Y, Sharma P, Berzin TM. Charting a path forward for clinical research in artificial intelligence and gastroenterology. Dig Endosc 2022; 34:4-12. [PMID: 33715244 DOI: 10.1111/den.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Gastroenterology has been an early leader in bridging the gap between artificial intelligence (AI) model development and clinical trial validation, and in recent years we have seen the publication of several randomized clinical trials examining the role of AI in gastroenterology. As AI applications for clinical medicine advance rapidly, there is a clear need for guidance surrounding AI-specific study design, evaluation, comparison, analysis and reporting of results. Several initiatives are in the publication or pre-publication phase including AI-specific amendments to minimum reporting guidelines for clinical trials, society task force initiatives aimed at priority use cases and research priorities, and minimum reporting guidelines that guide the reporting of clinical prediction models. In this paper, we examine applications of AI in clinical trials and discuss elements of newly published AI-specific extensions to the Consolidated Standards of Reporting Trials and Standard Protocol Items: Recommendations for Interventional Trials statements that guide clinical trial reporting and development. We then review AI applications at the pre-trial level in both endoscopy and other subfields of gastroenterology and explore areas where further guidance is needed to supplement the current guidance available at the pre-trial level.
Collapse
Affiliation(s)
- Jeremy R Glissen Brown
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Akbar K Waljee
- Division of Gastroenterology, University of Michigan Health System, University of Michigan, Ann Arbor, USA
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan.,Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, USA
| | - Tyler M Berzin
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
35
|
Use of Artificial Intelligence in the Prediction of Malignant Potential of Gastric Gastrointestinal Stromal Tumors. Dig Dis Sci 2022; 67:273-281. [PMID: 33547537 DOI: 10.1007/s10620-021-06830-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate whether AI via a deep learning algorithm using endoscopic ultrasonography (EUS) images could predict the malignant potential of gastric gastrointestinal stromal tumors (GISTs). METHODS A series of patients who underwent EUS before surgical resection for gastric GISTs were included. A total of 685 images of GISTs from 55 retrospectively included patients were used as the training data set for the AI system. Convolutional neural networks were constructed to build a deep learning model. After applying the synthetic minority oversampling technique, 70% of the generated images were used for AI training and 30% were used to test AI diagnoses. Next, validation was performed using 153 EUS images of 15 patients with GISTs. In addition, conventional EUS features of 55 patients in the training cohort were evaluated to predict the malignant potential of GISTs and mitotic index. RESULTS The overall sensitivity, specificity, and accuracy of the AI system for predicting malignancy risk were 83%, 94%, and 82% in the training dataset, and 75%, 73%, and 66% in the validation cohort, respectively. When patients were divided into low-risk and high-risk groups, sensitivity, specificity, and accuracy increased to 99% in the training dataset and 99.7%, 99.7%, and 99.6%, respectively, in the validation cohort. No conventional EUS features were found to be associated with either malignant potential or mitotic index (P > 0.05). CONCLUSIONS AI via a deep learning algorithm using EUS images could predict the malignant potential of gastric GISTs with high accuracy.
Collapse
|
36
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
37
|
Glissen Brown JR, Berzin TM. Adoption of New Technologies: Artificial Intelligence. Gastrointest Endosc Clin N Am 2021; 31:743-758. [PMID: 34538413 DOI: 10.1016/j.giec.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the past decade, artificial intelligence (AI) has been broadly applied to many aspects of human life, with recent groundbreaking successes in facial recognition, natural language processing, autonomous driving, and medical imaging. Gastroenterology has applied AI to a vast array of clinical problems, and some of the earliest prospective trials examining AI in medicine have been in computer vision applied to endoscopy. Evidence is mounting for 2 broad areas of AI as applied to gastroenterology: computer-aided detection and computer-aided diagnosis.
Collapse
Affiliation(s)
- Jeremy R Glissen Brown
- Center for Advanced Endoscopy, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02130, USA.
| | - Tyler M Berzin
- Center for Advanced Endoscopy, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02130, USA
| |
Collapse
|
38
|
Udriștoiu AL, Cazacu IM, Gruionu LG, Gruionu G, Iacob AV, Burtea DE, Ungureanu BS, Costache MI, Constantin A, Popescu CF, Udriștoiu Ș, Săftoiu A. Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model. PLoS One 2021; 16:e0251701. [PMID: 34181680 PMCID: PMC8238220 DOI: 10.1371/journal.pone.0251701] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Differential diagnosis of focal pancreatic masses is based on endoscopic ultrasound (EUS) guided fine needle aspiration biopsy (EUS-FNA/FNB). Several imaging techniques (i.e. gray-scale, color Doppler, contrast-enhancement and elastography) are used for differential diagnosis. However, diagnosis remains highly operator dependent. To address this problem, machine learning algorithms (MLA) can generate an automatic computer-aided diagnosis (CAD) by analyzing a large number of clinical images in real-time. We aimed to develop a MLA to characterize focal pancreatic masses during the EUS procedure. The study included 65 patients with focal pancreatic masses, with 20 EUS images selected from each patient (grayscale, color Doppler, arterial and venous phase contrast-enhancement and elastography). Images were classified based on cytopathology exam as: chronic pseudotumoral pancreatitis (CPP), neuroendocrine tumor (PNET) and ductal adenocarcinoma (PDAC). The MLA is based on a deep learning method which combines convolutional (CNN) and long short-term memory (LSTM) neural networks. 2688 images were used for training and 672 images for testing the deep learning models. The CNN was developed to identify the discriminative features of images, while a LSTM neural network was used to extract the dependencies between images. The model predicted the clinical diagnosis with an area under curve index of 0.98 and an overall accuracy of 98.26%. The negative (NPV) and positive (PPV) predictive values and the corresponding 95% confidential intervals (CI) are 96.7%, [94.5, 98.9] and 98.1%, [96.81, 99.4] for PDAC, 96.5%, [94.1, 98.8], and 99.7%, [99.3, 100] for CPP, and 98.9%, [97.5, 100] and 98.3%, [97.1, 99.4] for PNET. Following further validation on a independent test cohort, this method could become an efficient CAD tool to differentiate focal pancreatic masses in real-time.
Collapse
Affiliation(s)
| | - Irina Mihaela Cazacu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Gabriel Gruionu
- Faculty of Mechanics, University of Craiova, Craiova, Romania
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Daniela Elena Burtea
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Bogdan Silviu Ungureanu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Mădălin Ionuț Costache
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Alina Constantin
- Gastroenterology Department, Ponderas Academic Hospital, Bucharest, Romania
| | | | - Ștefan Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania
- INNES Worldwide LLC, Craiova, Romania
| | - Adrian Săftoiu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy Craiova, Craiova, Romania
- Gastroenterology Department, Ponderas Academic Hospital, Bucharest, Romania
| |
Collapse
|
39
|
Nguon LS, Seo K, Lim JH, Song TJ, Cho SH, Park JS, Park S. Deep Learning-Based Differentiation between Mucinous Cystic Neoplasm and Serous Cystic Neoplasm in the Pancreas Using Endoscopic Ultrasonography. Diagnostics (Basel) 2021; 11:diagnostics11061052. [PMID: 34201066 PMCID: PMC8229855 DOI: 10.3390/diagnostics11061052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.
Collapse
Affiliation(s)
- Leang Sim Nguon
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea; (L.S.N.); (K.S.)
| | - Kangwon Seo
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea; (L.S.N.); (K.S.)
| | - Jung-Hyun Lim
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea;
| | - Tae-Jun Song
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.-J.S.); (S.-H.C.)
| | - Sung-Hyun Cho
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.-J.S.); (S.-H.C.)
| | - Jin-Seok Park
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea;
- Correspondence: (J.-S.P.); (S.P.)
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (J.-S.P.); (S.P.)
| |
Collapse
|
40
|
Laoveeravat P, Abhyankar PR, Brenner AR, Gabr MM, Habr FG, Atsawarungruangkit A. Artificial intelligence for pancreatic cancer detection: Recent development and future direction. Artif Intell Gastroenterol 2021; 2:56-68. [DOI: 10.35712/aig.v2.i2.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, especially in the field of gastroenterology. AI can assist gastroenterologists in imaging-based testing and prediction of clinical diagnosis, for examples, detecting polyps during colonoscopy, identifying small bowel lesions using capsule endoscopy images, and predicting liver diseases based on clinical parameters. With its high mortality rate, pancreatic cancer can highly benefit from AI since the early detection of small lesion is difficult with conventional imaging techniques and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. The standard tumor markers have not been effective for diagnosis. There have been recent research studies in AI application in EUS and novel biomarkers to early detect and differentiate malignant pancreatic lesions. The findings are impressive compared to the available traditional methods. Herein, we aim to explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for pancreatic cancer detection.
Collapse
Affiliation(s)
- Passisd Laoveeravat
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Priya R Abhyankar
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Aaron R Brenner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Moamen M Gabr
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Fadlallah G Habr
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Amporn Atsawarungruangkit
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| |
Collapse
|
41
|
Aronsson L, Andersson R, Ansari D. Artificial neural networks versus LASSO regression for the prediction of long-term survival after surgery for invasive IPMN of the pancreas. PLoS One 2021; 16:e0249206. [PMID: 33765078 PMCID: PMC7993879 DOI: 10.1371/journal.pone.0249206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Prediction of long-term survival in patients with invasive intraductal papillary mucinous neoplasm (IPMN) of the pancreas may aid in patient assessment, risk stratification and personalization of treatment. This study aimed to investigate the predictive ability of artificial neural networks (ANN) and LASSO regression in terms of 5-year disease-specific survival. ANN work in a non-linear fashion, having a potential advantage in analysis of variables with complex correlations compared to regression models. LASSO is a type of regression analysis facilitating variable selection and regularization. A total of 440 patients undergoing surgical treatment for invasive IPMN of the pancreas registered in the Surveillance, Epidemiology and End Results (SEER) database between 2004 and 2016 were analyzed. The dataset was prior to analysis randomly split into a modelling and test set (7:3). The accuracy, precision and F1 score for predicting mortality were 0.82, 0.83 and 0.89, respectively for ANN with variable selection compared to 0.79, 0.85 and 0.87, respectively for the LASSO-model. ANN using all variables showed similar accuracy, precision and F1 score of 0.81, 0.85 and 0.88, respectively compared to a logistic regression analysis. McNemar´s test showed no statistical difference between the models. The models showed high and similar performance with regard to accuracy and precision for predicting 5-year survival status.
Collapse
Affiliation(s)
- Linus Aronsson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
42
|
Keane MG, Afghani E. A Review of the Diagnosis and Management of Premalignant Pancreatic Cystic Lesions. J Clin Med 2021; 10:1284. [PMID: 33808853 PMCID: PMC8003622 DOI: 10.3390/jcm10061284] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cystic lesions are an increasingly common clinical finding. They represent a heterogeneous group of lesions that include two of the three known precursors of pancreatic cancer, intraductal papillary mucinous neoplasms (IPMN) and mucinous cystic neoplasms (MCN). Given that approximately 8% of pancreatic cancers arise from these lesions, careful surveillance and timely surgery offers an opportunity for early curative resection in a disease with a dismal prognosis. This review summarizes the current evidence and guidelines for the diagnosis and management of IPMN/MCN. Current pre-operative diagnostic tests in pancreatic cysts are imperfect and a proportion of patients continue to undergo unnecessary surgical resection annually. Balancing cancer prevention while preventing surgical overtreatment, continues to be challenging when managing pancreatic cysts. Cyst fluid molecular markers, such as KRAS, GNAS, VHL, PIK3CA, SMAD4 and TP53, as well as emerging endoscopic technologies such as needle-based confocal laser endomicroscopy and through the needle microbiopsy forceps demonstrate improved diagnostic accuracy. Differences in management and areas of uncertainty between the guidelines are also discussed, including indications for surgery, surveillance protocols and if and when surveillance can be discontinued.
Collapse
Affiliation(s)
| | - Elham Afghani
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
43
|
Kane LE, Mellotte GS, Conlon KC, Ryan BM, Maher SG. Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration. Cancers (Basel) 2021; 13:769. [PMID: 33673153 PMCID: PMC7918773 DOI: 10.3390/cancers13040769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is regarded as one of the most lethal malignant diseases in the world, with GLOBOCAN 2020 estimates indicating that PC was responsible for almost half a million deaths worldwide in 2020. Pancreatic cystic lesions (PCLs) are fluid-filled structures found within or on the surface of the pancreas, which can either be pre-malignant or have no malignant potential. While some PCLs are found in symptomatic patients, nowadays many PCLs are found incidentally in patients undergoing cross-sectional imaging for other reasons-so called 'incidentalomas'. Current methods of characterising PCLs are imperfect and vary hugely between institutions and countries. As such, there is a profound need for improved diagnostic algorithms. This could facilitate more accurate risk stratification of those PCLs that have malignant potential and reduce unnecessary surveillance. As PC continues to have such a poor prognosis, earlier recognition and risk stratification of PCLs may lead to better treatment protocols. This review will focus on the importance of biomarkers in the context of PCLs and PCand outline how current 'omics'-related work could contribute to the identification of a novel integrated biomarker profile for the risk stratification of patients with PCLs and PC.
Collapse
Affiliation(s)
- Laura E. Kane
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Gregory S. Mellotte
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Kevin C. Conlon
- Discipline of Surgery, School of Medicine, Trinity College Dublin, Dublin D02 PN40, Ireland;
| | - Barbara M. Ryan
- Department of Gastroenterology, Tallaght University Hospital, Dublin D24 NR0A, Ireland; (G.S.M.); (B.M.R.)
| | - Stephen G. Maher
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| |
Collapse
|
44
|
Response to the letter entitled: "Comment on New Model for Predicting Malignancy in Patients With Intraductal Papillary Mucinous Neoplasm by Shimuzi et al.". Ann Surg 2021; 274:e873-e874. [PMID: 33443901 DOI: 10.1097/sla.0000000000004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Comment on New Model for Predicting Malignancy in Patients With Intraductal Papillary Mucinous Neoplasm by Shimuzi et al. Ann Surg 2021; 274:e872-e873. [PMID: 33443898 DOI: 10.1097/sla.0000000000004740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Akshintala VS, Khashab MA. Artificial intelligence in pancreaticobiliary endoscopy. J Gastroenterol Hepatol 2021; 36:25-30. [PMID: 33448514 DOI: 10.1111/jgh.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) applications in health care have exponentially increased in recent years, and a few of these are related to pancreatobiliary disorders. AI-based methods were applied to extract information, in prognostication, to guide clinical treatment decisions and in pancreatobiliary endoscopy to characterize lesions. AI applications in endoscopy are expected to reduce inter-operator variability, improve the accuracy of diagnosis, and assist in therapeutic decision-making in real time. AI-based literature must however be interpreted with caution given the limited external validation. A multidisciplinary approach combining clinical and imaging or endoscopy data will better utilize AI-based technologies to further improve patient care.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Goyal H, Mann R, Gandhi Z, Perisetti A, Zhang Z, Sharma N, Saligram S, Inamdar S, Tharian B. Application of artificial intelligence in pancreaticobiliary diseases. Ther Adv Gastrointest Endosc 2021; 14:2631774521993059. [PMID: 33644756 PMCID: PMC7890713 DOI: 10.1177/2631774521993059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of artificial intelligence and its applications has been increasing at a rapid pace in the field of gastroenterology. The application of artificial intelligence in gastroenterology ranges from colon cancer screening and characterization of dysplastic and neoplastic polyps to the endoscopic ultrasonographic evaluation of pancreatic diseases. Artificial intelligence has been found to be useful in the evaluation and enhancement of the quality measure for endoscopic retrograde cholangiopancreatography. Similarly, artificial intelligence techniques like artificial neural networks and faster region-based convolution network are showing promising results in early and accurate diagnosis of pancreatic cancer and its differentiation from chronic pancreatitis. Other artificial intelligence techniques like radiomics-based computer-aided diagnosis systems could help to differentiate between various types of cystic pancreatic lesions. Artificial intelligence and computer-aided systems also showing promising results in the diagnosis of cholangiocarcinoma and the prediction of choledocholithiasis. In this review, we discuss the role of artificial intelligence in establishing diagnosis, prognosis, predicting response to treatment, and guiding therapeutics in the pancreaticobiliary system.
Collapse
Affiliation(s)
- Hemant Goyal
- The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Rupinder Mann
- Academic Hospitalist, Saint Agnes Medical Center, Fresno, CA, USA
| | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medical Center, Scranton, PA, USA
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zhongheng Zhang
- Department of emergency medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, Fort Wayne, IN, USA
- Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Shreyas Saligram
- Division of Advanced Endoscopy, Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Sumant Inamdar
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin Tharian
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
48
|
Sun S, Liu E, Bhutani M. Artificial intelligence: The new wave of innovation in EUS. Endosc Ultrasound 2021; 10:79. [DOI: 10.4103/2303-9027.313802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
49
|
Gorris M, Hoogenboom SA, Wallace MB, van Hooft JE. Artificial intelligence for the management of pancreatic diseases. Dig Endosc 2021; 33:231-241. [PMID: 33065754 PMCID: PMC7898901 DOI: 10.1111/den.13875] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Novel artificial intelligence techniques are emerging in all fields of healthcare, including gastroenterology. The aim of this review is to give an overview of artificial intelligence applications in the management of pancreatic diseases. We performed a systematic literature search in PubMed and Medline up to May 2020 to identify relevant articles. Our results showed that the development of machine-learning based applications is rapidly evolving in the management of pancreatic diseases, guiding precision medicine in clinical, endoscopic and radiologic settings. Before implementation into clinical practice, further research should focus on the external validation of novel techniques, clarifying the accuracy and robustness of these models.
Collapse
Affiliation(s)
- Myrte Gorris
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sanne A. Hoogenboom
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Michael B. Wallace
- Department of Gastroenterology and HepatologyMayo Clinic JacksonvilleJacksonvilleUSA
| | - Jeanin E. van Hooft
- Department of Gastroenterology and HepatologyAmsterdam Gastroenterology Endocrinology MetabolismAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
50
|
Watson MD, Lyman WB, Passeri MJ, Murphy KJ, Sarantou JP, Iannitti DA, Martinie JB, Vrochides D, Baker EH. Use of Artificial Intelligence Deep Learning to Determine the Malignant Potential of Pancreatic Cystic Neoplasms With Preoperative Computed Tomography Imaging. Am Surg 2020; 87:602-607. [PMID: 33131302 DOI: 10.1177/0003134820953779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Society consensus guidelines are commonly used to guide management of pancreatic cystic neoplasms (PCNs). However, downsides of these guidelines include unnecessary surgery and missed malignancy. The aim of this study was to use computed tomography (CT)-guided deep learning techniques to predict malignancy of PCNs. MATERIALS AND METHODS Patients with PCNs who underwent resection were retrospectively reviewed. Axial images of the mucinous cystic neoplasms were collected and based on final pathology were assigned a binary outcome of advanced neoplasia or benign. Advanced neoplasia was defined as adenocarcinoma or intraductal papillary mucinous neoplasm with high-grade dysplasia. A convolutional neural network (CNN) deep learning model was trained on 66% of images, and this trained model was used to test 33% of images. Predictions from the deep learning model were compared to Fukuoka guidelines. RESULTS Twenty-seven patients met the inclusion criteria, with 18 used for training and 9 for model testing. The trained deep learning model correctly predicted 3 of 3 malignant lesions and 5 of 6 benign lesions. Fukuoka guidelines correctly classified 2 of 3 malignant lesions as high risk and 4 of 6 benign lesions as worrisome. Following deep learning model predictions would have avoided 1 missed malignancy and 1 unnecessary operation. DISCUSSION In this pilot study, a deep learning model correctly classified 8 of 9 PCNs and performed better than consensus guidelines. Deep learning can be used to predict malignancy of PCNs; however, further model improvements are necessary before clinical use.
Collapse
Affiliation(s)
- Michael D Watson
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - William B Lyman
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Michael J Passeri
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA.,Department of Surgical Oncology, Valley Health System, Paramus, NJ, USA
| | - Keith J Murphy
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - John P Sarantou
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - David A Iannitti
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - John B Martinie
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Dionisios Vrochides
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Erin H Baker
- Division of HPB Surgery, Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| |
Collapse
|