1
|
Gagnon M, Duceppe M, Colville A, Pope L, Côté M, Ogunremi D. An integrated strategy involving high-throughput sequencing to characterize an unknown GM wheat event in Canada. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:904-914. [PMID: 38051549 PMCID: PMC10955494 DOI: 10.1111/pbi.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Glyphosate-resistant wheat plants were discovered in southern Alberta in 2017, representing an unauthorized GM release in Canada. The Canadian Food Inspection Agency undertook a series of experiments to characterize and identify this unknown GM wheat, as well as to develop and validate construct-specific and event-specific qPCR assays. Results of PCR-based assays and Sanger sequencing indicated the presence of CaMV 35S promoter (p35S), Rice Actin 1 intron (RactInt1), CP4-EPSPS gene and nopaline synthase terminator (tNOS) elements in the unknown GM wheat. Genome walking and bead capture strategies, combined with high-throughput sequencing, were used to identify the 5' and 3' wheat junctions and the subsequent mapping of the insert to chromosome 3B of the wheat genome. A probable transformation vector, pMON25497, was recognized, and further testing identified the unknown GM wheat as MON71200 event, one of two events obtained with the pMON25497 vector. The two construct-specific assays targeted the junctions of the RactInt1 and the CP4-EPSPS elements and the CP4-EPSPS and tNOS elements, while the event-specific assay was located at the 3' junction into the wheat genome. Both construct-specific and event-specific assays had limits of detection of 0.10% of MON71200 in a seed pool. As expected, the two construct-specific assays cross-reacted with other wheat and corn events containing the same elements in the same order. No cross-reactivity was observed for the event-specific assay. The integrated strategy employed in this study can serve as a model for other cases when facing similar challenges involving unknown GM events.
Collapse
Affiliation(s)
| | | | - Adam Colville
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | - Louise Pope
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | | | - Dele Ogunremi
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| |
Collapse
|
2
|
Targeted High-Throughput Sequencing Enables the Detection of Single Nucleotide Variations in CRISPR/Cas9 Gene-Edited Organisms. Foods 2023; 12:foods12030455. [PMID: 36765984 PMCID: PMC9914749 DOI: 10.3390/foods12030455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Similar to genetically modified organisms (GMOs) produced by classical genetic engineering, gene-edited (GE) organisms and their derived food/feed products commercialized on the European Union market fall within the scope of European Union Directive 2001/18/EC. Consequently, their control in the food/feed chain by GMO enforcement laboratories is required by the competent authorities to guarantee food/feed safety and traceability (2003/1829/EC; 2003/1830/EC). However, their detection is potentially challenging at both the analytical and interpretation levels since this requires methodological approaches that can target and detect a specific single nucleotide variation (SNV) introduced into a GE organism. In this study, we propose a targeted high-throughput sequencing approach, including (i) a prior PCR-based enrichment step to amplify regions of interest, (ii) a sequencing step, and (iii) a data analysis methodology to identify SNVs of interest. To investigate if the performance of this targeted high-throughput sequencing approach is compatible with the performance criteria used in the GMO detection field, several samples containing different percentages of a GE rice line carrying a single adenosine insertion in OsMADS26 were prepared and analyzed. The SNV of interest in samples containing the GE rice line could successfully be detected, both at high and low percentages. No impact related to food processing or to the presence of other crop species was observed. The present proof-of-concept study has allowed us to deliver the first experimental-based evidence indicating that the proposed targeted high-throughput sequencing approach may constitute, in the future, a specific and sensitive tool to support the safety and traceability of the food/feed chain regarding GE plants carrying SNVs.
Collapse
|
3
|
Fraiture MA, Papazova N, Roosens NHC. DNA walking strategy to identify unauthorized genetically modified bacteria in microbial fermentation products. Int J Food Microbiol 2020; 337:108913. [PMID: 33126077 DOI: 10.1016/j.ijfoodmicro.2020.108913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
Recently, unexpected contaminations of unauthorized genetically modified microorganisms (GMM) carrying antimicrobial resistance (AMR) genes were reported in microbial fermentation products commercialized on the food and feed chain. To guarantee the traceability and safety of the food and feed chain, whole-genome sequencing (WGS) has played a key role to prove GMM contaminations via the characterization of unnatural associations of sequences. However, WGS requires a prior microbial isolation of the GMM strain, which can be difficult to successfully achieve. Therefore, in order to avoid such bottleneck, a culture-independent approach was proposed in this study. First, the screening for the aadD gene, an AMR gene conferring a resistance to kanamycin, and for the pUB110 shuttle vector, carrying the aadD gene and commonly used to produce GMM, is performed. In case of a positive signal, DNA walking methods anchored on the two borders of the detected pUB110 shuttle vector are applied to characterize unknown flanking regions. Following to the sequencing of the generated amplicons, unnatural associations of sequences can be identified, allowing to demonstrate the presence of unauthorized GMM. The developed culture-independent strategy was successfully applied on commercialized microbial fermentation products, allowing to prove the presence of GMM contaminations in the food and feed chain.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Nina Papazova
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Nancy H C Roosens
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| |
Collapse
|
4
|
Abstract
The presence of genetically modified organisms (GMO) is commonly assessed using real-time PCR methods targeting the most common transgenic elements found in GMOs. Once the presence of GM material has been established using these screening methods, GMOs are further identified using a battery of real-time PCR methods, each being specific of one GM event and usually targeting the junction of the plant genome and of the transgenic DNA insert. If, using these specific methods, no GMO could be identified, the presence of an unauthorized GMO is suspected. In this context, the aim of this work was to develop a fast and simple method to obtain the sequence of the transgene and of its junction with plant DNA, with the presence of a screening sequence as only prior knowledge. An unauthorized GM petunia, recently found on the French market, was used as template during the development of this new molecular tool. The innovative proposed protocol is based on the circularization of fragmented DNA followed by the amplification of the transgene and of its flanking regions using long-range inverse PCR. Sequencing was performed using the Oxford Nanopore MinION technology and a bioinformatic pipeline was developed.
Collapse
|
5
|
Fraiture MA, Deckers M, Papazova N, Roosens NHC. Strategy to Detect Genetically Modified Bacteria Carrying Tetracycline Resistance Gene in Fermentation Products. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01803-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Haselmair-Gosch C, Nitarska D, Walliser B, Flachowsky H, Marinovic S, Halbwirth H. Event-specific qualitative polymerase chain reaction analysis for two T-DNA copies in genetically modified orange Petunia. PLANT CELL, TISSUE AND ORGAN CULTURE 2020; 142:415-424. [PMID: 32684656 PMCID: PMC7359168 DOI: 10.1007/s11240-020-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
In 2017, various orange coloured petunia on the market turned out to be genetically modified (GM) without an official authorization for commercialization. Sequence analysis suggested these undeclared plants most probably originated from a plant transformation experiment performed in the 1980s. For a deeper understanding how GM petunia entered classical breeding programmes worldwide, and whether they originated from a single source or not, we undertook a molecular genetic characterization of the T-DNA integration sites in different GM petunia cultivars and breeding lines. By means of genome walking, we isolated different T-DNA sequences, which are located at the junctions between the T-DNA(s) and the petunia DNA. Based on the results obtained we conclude that there are at least two T-DNA copies of different lengths. This is supported by Southern blot analysis. For T-DNA1, the 3'-junction sequence was isolated, whereas the 5'-junction remained unclear. In contrast, for T-DNA2, the 5'-junction sequence was isolated, whereas the sequence isolated from the 3'-region consists only of T-DNA, but did not include the junction from the T-DNA to the petunia DNA. We developed primers for event-specific PCRs and screened a set of three orange GM petunia cultivars and 126 GM offspring from a commercial breeding program. We show that both T-DNA copies are present in all our tested GM petunia samples, which underpins the assumption of a single transgenic origin of the undeclared GM petunia. Most likely, the two T-DNAs are integrated in close proximity into the petunia genome.
Collapse
Affiliation(s)
- Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Daria Nitarska
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
7
|
Are antimicrobial resistance genes key targets to detect genetically modified microorganisms in fermentation products? Int J Food Microbiol 2020; 331:108749. [PMID: 32622259 DOI: 10.1016/j.ijfoodmicro.2020.108749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/05/2020] [Accepted: 06/06/2020] [Indexed: 11/21/2022]
Abstract
As genetically modified microorganisms (GMM), commonly used by the food and feed industry to produce additives, enzymes and flavourings, are frequently harbouring antimicrobial resistance (AMR) genes as selection markers, health and environmental concerns were consequently raised. For this reason, the interest of the competent authorities to control such microbial fermentation products has strongly increased, especially since several recent accidental contaminations of unauthorized GMM, or associated recombinant DNA, in bacterial fermentation products intended for the European food and feed chain. However, no global screening strategy is currently available in enforcement laboratories to assess the presence of GMM harbouring AMR genes and/or the presence of full-length AMR genes. Moreover, the confidentiality of the related GMM dossiers strongly hampers the development of methods to perform such control. To overcome this issue, an analysis of related publicly available patents was performed in this study to identify all reported AMR genes. On this basis, the aminoglycoside adenyltransferase (aadD) gene, conferring a resistance to both kanamycin and neomycin, was identified as a key target to cover a large spectrum of GM bacteria. A real-time PCR method to screen for its potential presence as well as a nested-PCR method associated with a sequencing analysis to assess its full-length were developed to target this aadD gene. The performance of these new methods were successfully evaluated in terms of specificity, sensitivity and applicability, allowing their easy implementation in enforcement laboratories. Moreover, the integration of these newly developed methods to our very recently proposed strategy, initially targeting GMM carrying a chloramphenicol resistance gene, allows to drastically increase the detection spectrum of GM bacteria producing fermentation food and feed products. The data generated by the proposed strategy represents therefore a crucial support for the competent authorities, especially to evaluate potential risks for the food and feed safety.
Collapse
|
8
|
Voorhuijzen MM, Prins TW, Belter A, Bendiek J, Brünen-Nieweler C, van Dijk JP, Goerlich O, Kok EJ, Pickel B, Scholtens IMJ, Stolz A, Grohmann L. Molecular Characterization and Event-Specific Real-Time PCR Detection of Two Dissimilar Groups of Genetically Modified Petunia ( Petunia x hybrida) Sold on the Market. FRONTIERS IN PLANT SCIENCE 2020; 11:1047. [PMID: 32760413 PMCID: PMC7372090 DOI: 10.3389/fpls.2020.01047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 05/05/2023]
Abstract
Petunia plants with unusual orange flowers were noticed on the European market and confirmed to be genetically modified (GM) by the Finnish authorities in spring 2017. Later in 2017, inspections and controls performed by several official laboratories of national competent authorities in the European Union detected several GM petunia varieties with orange flowers, but also another group of unusually colored flowers. In the latter group, a so far undetected gene coding for a flavonoid 3'5' hydroxylase (F3'5'H) responsible for the purple color was identified by German and Dutch authorities, suggesting that the petunias found on the markets contain different genetic constructs. Here, a strategy is described for the identification of GM petunia varieties. It is based on an initial GMO screening for known elements using (real-time) PCR and subsequent identification of the insertion sites by a gene walking-like approach called ALF (amplification of linearly-enriched fragments) in combination with Sanger and MinION sequencing. The results indicate that the positively identified GM petunias can be traced back to two dissimilar GM events used for breeding of the different varieties. The test results also confirm that the transgenic petunia event RL01-17 used in the first German field trial in 1991 is not the origin of the GM petunias sold on the market. On basis of the obtained sequence data, event-specific real-time PCR confirmatory methods were developed and validated. These methods are applicable for the rapid detection and identification of GM petunias in routine analysis. In addition, a decision support system was developed for revealing the most likely origin of the GM petunia.
Collapse
Affiliation(s)
- Marleen M. Voorhuijzen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, Netherlands
| | - Theo W. Prins
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, Netherlands
| | - Anke Belter
- Saxony-Anhalt Environmental Protection Agency (EPA), Halle (Saale), Germany
| | | | | | - Jeroen P. van Dijk
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, Netherlands
| | - Ottmar Goerlich
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Esther J. Kok
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, Netherlands
| | - Benjamin Pickel
- Agricultural Analytic and Research Institute, Speyer, Germany
| | - Ingrid M. J. Scholtens
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, Netherlands
| | - Andrea Stolz
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Lutz Grohmann
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
- *Correspondence: Lutz Grohmann,
| |
Collapse
|