1
|
Penny L, Main SC, De Michino SD, Bratman SV. Chromatin- and nucleosome-associated features in liquid biopsy: implications for cancer biomarker discovery. Biochem Cell Biol 2024; 102:291-298. [PMID: 38478957 DOI: 10.1139/bcb-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Cell-free DNA (cfDNA) from the bloodstream has been studied for cancer biomarker discovery, and chromatin-derived epigenetic features have come into the spotlight for their potential to expand clinical applications. Methylation, fragmentation, and nucleosome positioning patterns of cfDNA have previously been shown to reveal epigenomic and inferred transcriptomic information. More recently, histone modifications have emerged as a tool to further identify tumor-specific chromatin variants in plasma. A number of sequencing methods have been developed to analyze these epigenetic markers, offering new insights into tumor biology. Features within cfDNA allow for cancer detection, subtype and tissue of origin classification, and inference of gene expression. These methods provide a window into the complexity of cancer and the dynamic nature of its progression. In this review, we highlight the array of epigenetic features in cfDNA that can be extracted from chromatin- and nucleosome-associated organization and outline potential use cases in cancer management.
Collapse
Affiliation(s)
- Lucas Penny
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven D De Michino
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
2
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
3
|
Iglesias MJ, Sanchez-Rivera L, Ibrahim-Kosta M, Naudin C, Munsch G, Goumidi L, Farm M, Smith PM, Thibord F, Kral-Pointner JB, Hong MG, Suchon P, Germain M, Schrottmaier W, Dusart P, Boland A, Kotol D, Edfors F, Koprulu M, Pietzner M, Langenberg C, Damrauer SM, Johnson AD, Klarin DM, Smith NL, Smadja DM, Holmström M, Magnusson M, Silveira A, Uhlén M, Renné T, Martinez-Perez A, Emmerich J, Deleuze JF, Antovic J, Soria Fernandez JM, Assinger A, Schwenk JM, Souto Andres JC, Morange PE, Butler LM, Trégouët DA, Odeberg J. Elevated plasma complement factor H related 5 protein is associated with venous thromboembolism. Nat Commun 2023; 14:3280. [PMID: 37286573 PMCID: PMC10247781 DOI: 10.1038/s41467-023-38383-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.
Collapse
Affiliation(s)
- Maria Jesus Iglesias
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
- Division of Internal Medicine, University Hospital of North Norway (UNN), PB100, 9038, Tromsø, Norway
- Translational Vascular Research, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Laura Sanchez-Rivera
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Manal Ibrahim-Kosta
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique-Hôpitaux de Marseille, HemoVasc (CRB AP-HM HemoVasc), Marseille, France
| | - Clément Naudin
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
- Translational Vascular Research, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Gaëlle Munsch
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, Bordeaux, France
| | - Louisa Goumidi
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique-Hôpitaux de Marseille, HemoVasc (CRB AP-HM HemoVasc), Marseille, France
| | - Maria Farm
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Philip M Smith
- Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Theme of Emergency and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA, USA
- The Framingham Heart Study, Boston University, Framingham, MA, USA
| | - Julia Barbara Kral-Pointner
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Mun-Gwan Hong
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Pierre Suchon
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique-Hôpitaux de Marseille, HemoVasc (CRB AP-HM HemoVasc), Marseille, France
| | - Marine Germain
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, Bordeaux, France
- Laboratory of Excellence GENMED (Medical Genomics), Bordeaux, France
| | - Waltraud Schrottmaier
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philip Dusart
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
- Translational Vascular Research, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
- Laboratory of Excellence GENMED (Medical Genomics), Evry, France
| | - David Kotol
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Scott M Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA, USA
- The Framingham Heart Study, Boston University, Framingham, MA, USA
| | - Derek M Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - David M Smadja
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, 20 rue Leblanc, Paris, 75015, France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, 4 avenue de l'Observatoire, Paris, 75270, France
| | - Margareta Holmström
- Coagulation Unit, Department of Haematology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Maria Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Coagulation Unit, Department of Haematology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Angela Silveira
- Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, D-, 55131, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, D02 YN77, Ireland
| | - Angel Martinez-Perez
- Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau. IIB Sant Pau, Barcelona, Spain
| | - Joseph Emmerich
- Department of vascular medicine, Paris Saint-Joseph Hospital Group, INSERM 1153-CRESS, University of Paris Cité, 185 rue Raymond Losserand, Paris, 75674, France
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
- Laboratory of Excellence GENMED (Medical Genomics), Evry, France
- Centre D'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Jovan Antovic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Jose Manuel Soria Fernandez
- Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau. IIB Sant Pau, Barcelona, Spain
| | - Alice Assinger
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Joan Carles Souto Andres
- Unitat d'Hemostàsia i Trombosi. Hospital de la Santa Creu i Sant Pau and IIB-Sant Pau, Barcelona, Spain
| | - Pierre-Emmanuel Morange
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Laboratory of Haematology, CRB Assistance Publique-Hôpitaux de Marseille, HemoVasc (CRB AP-HM HemoVasc), Marseille, France
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden
- Translational Vascular Research, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - David-Alexandre Trégouët
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, Bordeaux, France.
- Laboratory of Excellence GENMED (Medical Genomics), Bordeaux, France.
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, SE-171 21, Stockholm, Sweden.
- Division of Internal Medicine, University Hospital of North Norway (UNN), PB100, 9038, Tromsø, Norway.
- Translational Vascular Research, Department of Clinical Medicine, UiT The Arctic University of Norway, 9019, Tromsø, Norway.
- Department of Medicine Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Coagulation Unit, Department of Haematology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Dahl L, Kotliar IB, Bendes A, Dodig-Crnković T, Fromm S, Elofsson A, Uhlén M, Sakmar TP, Schwenk JM. Multiplexed selectivity screening of anti-GPCR antibodies. SCIENCE ADVANCES 2023; 9:eadf9297. [PMID: 37134173 PMCID: PMC10156119 DOI: 10.1126/sciadv.adf9297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
G protein-coupled receptors (GPCRs) control critical cellular signaling pathways. Therapeutic agents including anti-GPCR antibodies (Abs) are being developed to modulate GPCR function. However, validating the selectivity of anti-GPCR Abs is challenging because of sequence similarities among individual receptors within GPCR subfamilies. To address this challenge, we developed a multiplexed immunoassay to test >400 anti-GPCR Abs from the Human Protein Atlas targeting a customized library of 215 expressed and solubilized GPCRs representing all GPCR subfamilies. We found that ~61% of Abs tested were selective for their intended target, ~11% bound off-target, and ~28% did not bind to any GPCR. Antigens of on-target Abs were, on average, significantly longer, more disordered, and less likely to be buried in the interior of the GPCR protein than the other Abs. These results provide important insights into the immunogenicity of GPCR epitopes and form a basis for designing therapeutic Abs and for detecting pathological auto-Abs against GPCRs.
Collapse
Affiliation(s)
- Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Samuel Fromm
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| |
Collapse
|
5
|
Hagey DW, El Andaloussi S. The promise and challenges of extracellular vesicles in the diagnosis of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:227-241. [PMID: 36803813 DOI: 10.1016/b978-0-323-85555-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as essential means of intercommunication for all cell types, and their role in CNS physiology is increasingly appreciated. Accumulating evidence has demonstrated that EVs play important roles in neural cell maintenance, plasticity, and growth. However, EVs have also been demonstrated to spread amyloids and inflammation characteristic of neurodegenerative disease. Such dual roles suggest that EVs may be prime candidates for neurodegenerative disease biomarker analysis. This is supported by several intrinsic properties of EVs: Populations can be enriched by capturing surface proteins from their cell of origin, their diverse cargo represent the complex intracellular states of the cells they derive from, and they can pass the blood-brain barrier. Despite this promise, there are important questions outstanding in this young field that will need to be answered before it can fulfill its potential. Namely, overcoming the technical challenges of isolating rare EV populations, the difficulties inherent in detecting neurodegeneration, and the ethical considerations of diagnosing asymptomatic individuals. Although daunting, succeeding to answer these questions has the potential to provide unprecedented insight and improved treatment of neurodegenerative disease in the future.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
6
|
Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 2022; 5:1402. [PMID: 36550367 PMCID: PMC9780212 DOI: 10.1038/s42003-022-04349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication and a promising class of biomarkers. Surface proteins of EVs play decisive roles in establishing a connection with recipient cells, and they are putative targets for diagnostic assays. Analysis of the surface proteins can thus both illuminate the biological functions of EVs and help identify potential biomarkers. We developed a strategy combining high-resolution mass spectrometry (HRMS) and proximity ligation assays (PLA) to first identify and then validate surface proteins discovered on EVs. We applied our workflow to investigate surface proteins of small EVs found in seminal fluid (SF-sEV). We identified 1,014 surface proteins and verified the presence of a subset of these on the surface of SF-sEVs. Our work demonstrates a general strategy for deep analysis of EVs' surface proteins across patients and pathological conditions, proceeding from unbiased screening by HRMS to ultra-sensitive targeted analyses via PLA.
Collapse
|
7
|
Edfors F, Iglesias MJ, Butler LM, Odeberg J. Proteomics in thrombosis research. Res Pract Thromb Haemost 2022; 6:e12706. [PMID: 35494505 PMCID: PMC9039028 DOI: 10.1002/rth2.12706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
A State of the Art lecture titled “Proteomics in Thrombosis Research” was presented at the ISTH Congress in 2021. In clinical practice, there is a need for improved plasma biomarker‐based tools for diagnosis and risk prediction of venous thromboembolism (VTE). Analysis of blood, to identify plasma proteins with potential utility for such tools, could enable an individualized approach to treatment and prevention. Technological advances to study the plasma proteome on a large scale allows broad screening for the identification of novel plasma biomarkers, both by targeted and nontargeted proteomics methods. However, assay limitations need to be considered when interpreting results, with orthogonal validation required before conclusions are drawn. Here, we review and provide perspectives on the application of affinity‐ and mass spectrometry‐based methods for the identification and analysis of plasma protein biomarkers, with potential application in the field of VTE. We also provide a future perspective on discovery strategies and emerging technologies for targeted proteomics in thrombosis research. Finally, we summarize relevant new data on this topic, presented during the 2021 ISTH Congress.
Collapse
Affiliation(s)
- Fredrik Edfors
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Karolinska University Laboratory Karolinska University Hospital Stockholm Sweden
| | - Maria Jesus Iglesias
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
| | - Lynn M. Butler
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Clinical Chemistry and Blood Coagulation Research Department of Molecular Medicine and Surgery Karolinska Institute Stockholm Sweden
- Clinical Chemistry Karolinska University Laboratory Karolinska University Hospital Stockholm Sweden
- Department of Clinical Medicine The Arctic University of Norway Tromsø Norway
| | - Jacob Odeberg
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Department of Clinical Medicine The Arctic University of Norway Tromsø Norway
- Division of Internal Medicine University Hospital of North Norway Tromsø Norway
- Coagulation Unit Department of Hematology Karolinska University Hospital Stockholm Sweden
- Department of Medicine Solna Karolinska Institute Stockholm Sweden
| |
Collapse
|
8
|
Tokuoka SM, Kita Y, Sato M, Shimizu T, Yatomi Y, Oda Y. Lipid Profiles of Human Serum Fractions Enhanced with CD9 Antibody-Immobilized Magnetic Beads. Metabolites 2022; 12:metabo12030230. [PMID: 35323673 PMCID: PMC8956076 DOI: 10.3390/metabo12030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Blood samples are minimally invasive and can be collected repeatedly, but they are far from the site of disease and the target molecules are diluted by the large amount of blood. Therefore, we performed lipidomics using immunoprecipitation as a method to enrich specific fractions of serum. In this study, a CD9 antibody was immobilized on magnetic beads to enrich CD9-containing components in the serum for lipidomics. The percentages of phospholipids recovered from serum by methanol and isopropanol extractions were not significantly different, but triglycerides were barely recovered from serum by methanol extraction, requiring the use of isopropanol. However, once the serum was enriched with CD9 magnetic beads, triglycerides, and phospholipids were recovered at similar levels in both methanol and isopropanol extractions. Therefore, it is possible that the triglyceride fraction of the whole serum and the triglyceride fraction were enriched in CD9 magnetic beads differ in localization and properties. In addition, the variation per disease was small in general serum lipidomics; however, the difference per disease appeared larger when CD9 magnetic bead enrichment was employed.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- National Center for Global Health and Medicine, Department of Lipid Signaling, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Correspondence: ; Tel.: +81-35-841-3540
| |
Collapse
|
9
|
Timms M, Steel R. Defining the specificity of recombinant human erythropoietin confirmation in equine samples by liquid chromatography-tandem mass spectrometry. Drug Test Anal 2021; 14:676-689. [PMID: 34898016 DOI: 10.1002/dta.3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
The proteotypic human EPO peptides YLLEAK (T4), SLTTLLR (T11), TITADTFR (T14), and VYSNFLR (T17) are often used to confirm the presence of recombinant human EPO (rhEPO) in equine samples. Each of these peptides contains one or more isomeric leucine or isoleucine amino acids, raising the possibility that a simple leucine/isoleucine substitution could lead to a false identification when compared with a rhEPO reference standard. To examine this possibility variants of these four peptides were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These studies indicate that confirmation of rhEPO in equine samples by immuno-affinity capture and LC-MS/MS analysis is true and accurate. It was also found that chromatography played a greater role in determining LC-MS/MS specificity than tandem mass spectrometry and that, in the case of more hydrophilic peptides, the accuracy of peptide identification could be enhanced by the inclusion of 13 C and 15 N labelled peptide internal standards.
Collapse
Affiliation(s)
- Mark Timms
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Victoria, Australia
| | - Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Victoria, Australia
| |
Collapse
|
10
|
Iglesias MJ, Kruse LD, Sanchez-Rivera L, Enge L, Dusart P, Hong MG, Uhlén M, Renné T, Schwenk JM, Bergstrom G, Odeberg J, Butler LM. Identification of Endothelial Proteins in Plasma Associated With Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2021; 41:2990-3004. [PMID: 34706560 PMCID: PMC8608011 DOI: 10.1161/atvbaha.121.316779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. Conclusions: EC proteins in plasma could reflect vascular health status.
Collapse
Affiliation(s)
- Maria J Iglesias
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.)
| | - Larissa D Kruse
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Laura Sanchez-Rivera
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Linnea Enge
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Philip Dusart
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mun-Gwan Hong
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Germany (T.R.).,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland (T.R.).,Centre for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany (T.R.)
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.)
| | - Göran Bergstrom
- Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden (G.B.)
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø (M.J.I., J.O.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Coagulation Unit, Department of Hematology (J.O.), Karolinska University Hospital, Stockholm, Sweden
| | - Lynn M Butler
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden (M.J.I., L.D.K., L.S.-R., L.E., P.D., M.G.H., M.U., J.M.S., J.O., L.M.B.).,Department of Clinical Medicine, The Arctic University of Norway, Tromsø (J.O., L.M.B.).,Clinical Chemistry, Karolinska University Laboratory (L.M.B.), Karolinska University Hospital, Stockholm, Sweden.,Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (L.M.B.)
| |
Collapse
|
11
|
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism. Sci Rep 2021; 11:14015. [PMID: 34234248 PMCID: PMC8263618 DOI: 10.1038/s41598-021-93390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.
Collapse
|
12
|
Bendes A, Dale M, Mattsson C, Dodig-Crnković T, Iglesias MJ, Schwenk JM, Fredolini C. Bead-Based Assays for Validating Proteomic Profiles in Body Fluids. Methods Mol Biol 2021; 2344:65-78. [PMID: 34115352 DOI: 10.1007/978-1-0716-1562-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein biomarkers in biological fluids represent an important resource for improving the clinical management of diseases. Current proteomics technologies are capable of performing high-throughput and multiplex profiling in different types of fluids, often leading to the shortlisting of tens of candidate biomarkers per study. However, before reaching any clinical setting, these discoveries require thorough validation and an assay that would be suitable for routine analyses. In the path from biomarker discovery to validation, the performance of the assay implemented for the intended protein quantification is extremely critical toward achieving reliable and reproducible results. Development of robust sandwich immunoassays for individual candidates is challenging and labor and resource intensive, and multiplies when evaluating a panel of interesting candidates at the same time. Here we describe a versatile pipeline that facilitates the systematic and parallel development of multiple sandwich immunoassays using a bead-based technology.
Collapse
Affiliation(s)
- Annika Bendes
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matilda Dale
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Mattsson
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Jesus Iglesias
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Tromsö, Tromsö, Norway
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Claudia Fredolini
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
13
|
Iglesias MJ, Schwenk JM, Odeberg J. Affinity Proteomics Assays for Cardiovascular and Atherosclerotic Disease Biomarkers. Methods Mol Biol 2021; 2344:163-179. [PMID: 34115359 DOI: 10.1007/978-1-0716-1562-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Systematic exploration of the dynamic human plasma proteome enables the discovery of novel protein biomarkers. Using state-of-the-art technologies holds the promise to facilitate a better diagnosis and risk prediction of diseases. Cardiovascular disease (CVD) pathophysiology is characterized for unbalancing of processes such as vascular inflammation, endothelial dysfunction, or lipid profiles among others. Such processes have a direct impact on the dynamic and complex composition of blood and hence the plasma proteome. Therefore, the study of the plasma proteome comprises an excellent exploratory source of biomarker research particularly for CVD. We describe the protocol for performing the discovery of protein biomarker candidates using the suspension bead array technology. The process does not require depletion steps to remove abundant proteins and consumes only a few microliters of sample from the body fluid of interest. The approach is scalable to measure many analytes as well as large numbers of samples. Moreover, we describe a bead-assisted antibody-labeling process that helps to develop quantitative assays for validation purposes and facilitate the translation of the identified candidates into clinical studies.
Collapse
Affiliation(s)
- Maria Jesus Iglesias
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden. .,Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Tromsø, Tromsø, Norway.
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden.,Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Tromsø, Tromsø, Norway.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Sivertsson Å, Lindström E, Oksvold P, Katona B, Hikmet F, Vuu J, Gustavsson J, Sjöstedt E, von Feilitzen K, Kampf C, Schwenk JM, Uhlén M, Lindskog C. Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins. J Proteome Res 2020; 19:4766-4781. [PMID: 33170010 PMCID: PMC7723238 DOI: 10.1021/acs.jproteome.0c00486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The localization of proteins at a
tissue- or cell-type-specific
level is tightly linked to the protein function. To better understand
each
protein’s role in cellular systems, spatial information constitutes
an important complement to quantitative data. The standard methods
for determining the spatial distribution of proteins in single cells
of complex tissue samples make use of antibodies. For a stringent
analysis of the human proteome, we used orthogonal methods and independent
antibodies to validate 5981 antibodies that show the expression of
3775 human proteins across all major human tissues. This enhanced
validation uncovered 56 proteins corresponding to the group of “missing
proteins” and 171 proteins of unknown function. The presented
strategy will facilitate further discussions around criteria for evidence
of protein existence based on immunohistochemistry and serves as a
useful guide to identify candidate proteins for integrative studies
with quantitative proteomics methods.
Collapse
Affiliation(s)
- Åsa Sivertsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Emil Lindström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Per Oksvold
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Borbala Katona
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Feria Hikmet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Jimmy Vuu
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Jonas Gustavsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kalle von Feilitzen
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Caroline Kampf
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.,Atlas Antibodies AB, 16869 Bromma, Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, 17121 Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
15
|
Wang C, Senapati S, Chang HC. Liquid biopsy technologies based on membrane microfluidics: High-yield purification and selective quantification of biomarkers in nanocarriers. Electrophoresis 2020; 41:1878-1892. [PMID: 32180242 PMCID: PMC7492446 DOI: 10.1002/elps.202000015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Liquid biopsy, screening cancer non-invasively and frequently by detecting and quantifying molecular markers in physiological fluids, would significantly improve cancer survival rate but it remains a distant goal. The key obstacles presented by the highly heterogeneous samples are rapid/high-yield purification and precise/selective marker capture by their antibody and oligo probes. As irregular expressions of these molecular biomarkers are the key signals, quantifying only those from the cancer cells would greatly enhance the performance of the screening tests. The recent discovery that the biomarkers are carried by nanocarriers, such as exosomes, with cell-specific membrane proteins suggests that such selection may be possible, although a new suite of fractionation and quantification technologies would need to be developed. Although under-appreciated, membrane microfluidics has made considerable contributions to resolving these issues. We review the progress made so far, based on ion-selective, track-etched, and gel membranes and advanced electrophoretic and nano-filtration designs, in this perspective and suggest future directions.
Collapse
Affiliation(s)
- Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
16
|
Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet 2020; 22:19-37. [PMID: 32860016 DOI: 10.1038/s41576-020-0268-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Proteomic analysis of cells, tissues and body fluids has generated valuable insights into the complex processes influencing human biology. Proteins represent intermediate phenotypes for disease and provide insight into how genetic and non-genetic risk factors are mechanistically linked to clinical outcomes. Associations between protein levels and DNA sequence variants that colocalize with risk alleles for common diseases can expose disease-associated pathways, revealing novel drug targets and translational biomarkers. However, genome-wide, population-scale analyses of proteomic data are only now emerging. Here, we review current findings from studies of the plasma proteome and discuss their potential for advancing biomedical translation through the interpretation of genome-wide association analyses. We highlight the challenges faced by currently available technologies and provide perspectives relevant to their future application in large-scale biobank studies.
Collapse
|
17
|
Dodig-Crnković T, Hong MG, Thomas CE, Häussler RS, Bendes A, Dale M, Edfors F, Forsström B, Magnusson PKE, Schuppe-Koistinen I, Odeberg J, Fagerberg L, Gummesson A, Bergström G, Uhlén M, Schwenk JM. Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling. EBioMedicine 2020; 57:102854. [PMID: 32629387 PMCID: PMC7334812 DOI: 10.1016/j.ebiom.2020.102854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. METHODS To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. FINDINGS We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. INTERPRETATION This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches. FUNDING This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish Research Council.
Collapse
Affiliation(s)
- Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Mun-Gwan Hong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Cecilia Engel Thomas
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Ragna S Häussler
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Annika Bendes
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Matilda Dale
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Björn Forsström
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm 171 77, Sweden
| | - Ina Schuppe-Koistinen
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden; Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden; Department of Clinical Medicine, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), UiT the Arctic University of Norway, Tromsø 9010, Norway; Coagulation unit, Department of Hematology, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg 413 45, Sweden; Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg 413 45, Sweden; Region Västra Götaland, Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Tomtebodavägen 23, Stockholm 171 65, Sweden.
| |
Collapse
|
18
|
Deeg CA, Degroote RL, Giese IM, Hirmer S, Amann B, Weigand M, Wiedemann C, Hauck SM. CD11d is a novel antigen on chicken leukocytes. J Proteomics 2020; 225:103876. [PMID: 32534212 DOI: 10.1016/j.jprot.2020.103876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023]
Abstract
In life sciences, antibodies are among the most commonly used tools for identifying, tracking, quantifying and isolating molecules, mainly proteins. However, it has recently become clear that antibodies often fall short with respect to specificity and selectivity and in many cases target proteins are not even known. When commercial availability of antibodies is scarce, e.g. for targeting proteins from farm animals, researchers face additional challenges: they often have to rely on cross-reactive antibodies, which are poorly characterized for their exact target, their actual cross-reactivity and the desired application. In this study, we aimed at identifying the true target of mouse monoclonal antibody 8F2, which was generated against chicken PBMC and used for decades in research, while it's actual target molecule remained unknown. We used 8F2 antibody for immunoprecipitation in chicken PBMC and subsequently identified its true target as CD11d, which was never described in chicken lymphocytes before, by quantitative LC-MSMS. The most abundant interactor of CD11d was identified as integrin beta 2. The existence of this alpha integrin was therefore clearly proven on protein level and provides a first basis to further assess the role of CD11d in chickens in future studies. Data are available via ProteomeXchange with identifier PXD017248. SIGNIFICANCE: Our studies determined CD11d as the true target of a previously uncharacterized mouse monoclonal antibody 8F2, generated against chicken peripheral blood derived mononuclear cells (PBMC). This is therefore now first member of alpha integrins in chickens, that existence was now clearly identified on protein level. The additional identification of CD11d interactors provides information on integrin-dependent regulation of signaling networks, allowing further functional studies.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany.
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Isabella M Giese
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Sieglinde Hirmer
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Maria Weigand
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Carmen Wiedemann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 80939 Munich, Germany
| |
Collapse
|
19
|
Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Pennington S, Snyder MP, Baker MS, Deutsch EW. Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. J Proteome Res 2019; 18:4098-4107. [PMID: 31430157 PMCID: PMC6898754 DOI: 10.1021/acs.jproteome.9b00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Christopher M. Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Jochen M. Schwenk
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, South Korea
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Siqi Liu
- BGI Group-Shenzhen, Yantian District, Shenzhen 518083, China
| | - Stephen Pennington
- School of Medicine, University College Dublin, Conway Institute Belfield, Dublin 4, Ireland
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Alway Building, 300 Pasteur Drive and 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road, North Ryde, NSW 2109, Australia
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
20
|
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res 2019; 18:4085-4097. [PMID: 31573204 DOI: 10.1021/acs.jproteome.9b00503] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteomic analysis of human blood and blood-derived products (e.g., plasma) offers an attractive avenue to translate research progress from the laboratory into the clinic. However, due to its unique protein composition, performing proteomics assays with plasma is challenging. Plasma proteomics has regained interest due to recent technological advances, but challenges imposed by both complications inherent to studying human biology (e.g., interindividual variability) and analysis of biospecimens (e.g., sample variability), as well as technological limitations remain. As part of the Human Proteome Project (HPP), the Human Plasma Proteome Project (HPPP) brings together key aspects of the plasma proteomics pipeline. Here, we provide considerations and recommendations concerning study design, plasma collection, quality metrics, plasma processing workflows, mass spectrometry (MS) data acquisition, data processing, and bioinformatic analysis. With exciting opportunities in studying human health and disease though this plasma proteomics pipeline, a more informed analysis of human plasma will accelerate interest while enhancing possibilities for the incorporation of proteomics-scaled assays into clinical practice.
Collapse
Affiliation(s)
- Vera Ignjatovic
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia.,Department of Paediatrics , The University of Melbourne , Parkville , VIC 3052 , Australia
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences , University of Copenhagen , 2200 Copenhagen , Denmark.,Department of Proteomics and Signal Transduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Krishnan K Palaniappan
- Freenome , 259 East Grand Avenue , South San Francisco , California 94080 , United States
| | - Jessica E Chaaban
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Human Genetics, and Internal Medicine and School of Public Health , University of Michigan , 100 Washtenaw Avenue , Ann Arbor , Michigan 48109-2218 , United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , 75 Talavera Road , North Ryde , NSW 2109 , Australia
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109 , United States
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab , KTH Royal Institute of Technology , 171 65 Stockholm , Sweden
| |
Collapse
|
21
|
Pineau C, Hikmet F, Zhang C, Oksvold P, Chen S, Fagerberg L, Uhlén M, Lindskog C. Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics. J Proteome Res 2019; 18:4215-4230. [PMID: 31429579 DOI: 10.1021/acs.jproteome.9b00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most complex organs in the human body is the testis, where spermatogenesis takes place. This physiological process involves thousands of genes and proteins that are activated and repressed, making testis the organ with the highest number of tissue-specific genes. However, the function of a large proportion of the corresponding proteins remains unknown and testis harbors many missing proteins (MPs), defined as products of protein-coding genes that lack experimental mass spectrometry evidence. Here, an integrated omics approach was used for exploring the cell type-specific protein expression of genes with an elevated expression in testis. By combining genome-wide transcriptomics analysis with immunohistochemistry, more than 500 proteins with distinct testicular protein expression patterns were identified, and these were selected for in-depth characterization of their in situ expression in eight different testicular cell types. The cell type-specific protein expression patterns allowed us to identify six distinct clusters of expression at different stages of spermatogenesis. The analysis highlighted numerous poorly characterized proteins in each of these clusters whose expression overlapped with that of known proteins involved in spermatogenesis, including 85 proteins with an unknown function and 60 proteins that previously have been classified as MPs. Furthermore, we were able to characterize the in situ distribution of several proteins that previously lacked spatial information and cell type-specific expression within the testis. The testis elevated expression levels both at the RNA and protein levels suggest that these proteins are related to testis-specific functions. In summary, the study demonstrates the power of combining genome-wide transcriptomics analysis with antibody-based protein profiling to explore the cell type-specific expression of both well-known proteins and MPs. The analyzed proteins constitute important targets for further testis-specific research in male reproductive disorders.
Collapse
Affiliation(s)
- Charles Pineau
- Univ Rennes , Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085 , 35042 Rennes Cedex, France.,Protim , Univ Rennes , 35042 Rennes Cedex, France
| | - Feria Hikmet
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| | - Cheng Zhang
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Per Oksvold
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Shuqi Chen
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Linn Fagerberg
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Mathias Uhlén
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Cecilia Lindskog
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| |
Collapse
|
22
|
Häussler RS, Bendes A, Iglesias M, Sanchez-Rivera L, Dodig-Crnković T, Byström S, Fredolini C, Birgersson E, Dale M, Edfors F, Fagerberg L, Rockberg J, Tegel H, Uhlén M, Qundos U, Schwenk JM. Systematic Development of Sandwich Immunoassays for the Plasma Secretome. Proteomics 2019; 19:e1900008. [PMID: 31278833 DOI: 10.1002/pmic.201900008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.
Collapse
Affiliation(s)
- Ragna S Häussler
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Annika Bendes
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - MariaJesus Iglesias
- Division of Cellular and Clinical Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, 9010, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, 9010, Tromsø, Norway
| | - Laura Sanchez-Rivera
- Division of Cellular and Clinical Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Tea Dodig-Crnković
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Sanna Byström
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Claudia Fredolini
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Elin Birgersson
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Matilda Dale
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Fredrik Edfors
- Division of Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Linn Fagerberg
- Division of Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Johan Rockberg
- Division of Protein Technology, Department of Protein Science, KTH - Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Hanna Tegel
- Division of Protein Technology, Department of Protein Science, KTH - Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Mathias Uhlén
- Division of Systems Biology, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark
| | | | - Jochen M Schwenk
- Division of Affinity Proteomics, Science for Life Laboratory, KTH - Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| |
Collapse
|