1
|
Papandrianos NI, Apostolopoulos ID, Feleki A, Moustakidis S, Kokkinos K, Papageorgiou EI. AI-based classification algorithms in SPECT myocardial perfusion imaging for cardiovascular diagnosis: a review. Nucl Med Commun 2023; 44:1-11. [PMID: 36514926 DOI: 10.1097/mnm.0000000000001634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, deep learning has made a breakthrough and established its position in machine learning classification problems in medical image analysis. Deep learning has recently displayed remarkable applicability in a range of different medical applications, as well as in nuclear cardiology. This paper implements a literature review protocol and reports the latest advances in artificial intelligence (AI)-based classification in SPECT myocardial perfusion imaging in heart disease diagnosis. The representative and most recent works are reported to demonstrate the use of AI and deep learning technologies in medical image analysis in nuclear cardiology for cardiovascular diagnosis. This review also analyses the primary outcomes of the presented research studies and suggests future directions focusing on the explainability of the deployed deep-learning systems in clinical practice.
Collapse
Affiliation(s)
| | | | - Anna Feleki
- Department of Energy Systems, University of Thessaly, Larisa, Greece
| | - Serafeim Moustakidis
- Department of Energy Systems, University of Thessaly, Larisa, Greece
- AIDEAS OÜ, Tallinn, Estonia
| | | | | |
Collapse
|
2
|
Maul J, Straub J. Assessment of the Use of Patient Vital Sign Data for Preventing Misidentification and Medical Errors. Healthcare (Basel) 2022; 10:healthcare10122440. [PMID: 36553964 PMCID: PMC9777871 DOI: 10.3390/healthcare10122440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/09/2022] Open
Abstract
Patient misidentification is a preventable issue that contributes to medical errors. When patients are confused with each other, they can be given the wrong medication or unneeded surgeries. Unconscious, juvenile, and mentally impaired patients represent particular areas of concern, due to their potential inability to confirm their identity or the possibility that they may inadvertently respond to an incorrect patient name (in the case of juveniles and the mentally impaired). This paper evaluates the use of patient vital sign data, within an enabling artificial intelligence (AI) framework, for the purposes of patient identification. The AI technique utilized is both explainable (meaning that its decision-making process is human understandable) and defensible (meaning that its decision-making pathways cannot be altered, just optimized). It is used to identify patients based on standard vital sign data. Analysis is presented on the efficacy of doing this, for the purposes of catching misidentification and preventing error.
Collapse
|
3
|
An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: This study targets the development of an explainable deep learning methodology for the automatic classification of coronary artery disease, utilizing SPECT MPI images. Deep learning is currently judged as non-transparent due to the model’s complex non-linear structure, and thus, it is considered a «black box», making it hard to gain a comprehensive understanding of its internal processes and explain its behavior. Existing explainable artificial intelligence tools can provide insights into the internal functionality of deep learning and especially of convolutional neural networks, allowing transparency and interpretation. Methods: This study seeks to address the identification of patients’ CAD status (infarction, ischemia or normal) by developing an explainable deep learning pipeline in the form of a handcrafted convolutional neural network. The proposed RGB-CNN model utilizes various pre- and post-processing tools and deploys a state-of-the-art explainability tool to produce more interpretable predictions in decision making. The dataset includes cases from 625 patients as stress and rest representations, comprising 127 infarction, 241 ischemic, and 257 normal cases previously classified by a doctor. The imaging dataset was split into 20% for testing and 80% for training, of which 15% was further used for validation purposes. Data augmentation was employed to increase generalization. The efficacy of the well-known Grad-CAM-based color visualization approach was also evaluated in this research to provide predictions with interpretability in the detection of infarction and ischemia in SPECT MPI images, counterbalancing any lack of rationale in the results extracted by the CNNs. Results: The proposed model achieved 93.3% accuracy and 94.58% AUC, demonstrating efficient performance and stability. Grad-CAM has shown to be a valuable tool for explaining CNN-based judgments in SPECT MPI images, allowing nuclear physicians to make fast and confident judgments by using the visual explanations offered. Conclusions: Prediction results indicate a robust and efficient model based on the deep learning methodology which is proposed for CAD diagnosis in nuclear medicine.
Collapse
|
4
|
Velmahos CS, Badgeley M, Lo Y. Using deep learning to identify bladder cancers with FGFR-activating mutations from histology images. Cancer Med 2021; 10:4805-4813. [PMID: 34114376 PMCID: PMC8290253 DOI: 10.1002/cam4.4044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, the fibroblast growth factor receptor (FGFR) pathway has been proven to be an important therapeutic target in bladder cancer. FGFR-targeted therapies are effective for patients with FGFR mutation, which can be discovered through genetic sequencing. However, genetic sequencing is not commonly performed at diagnosis, whereas a histologic assessment of the tumor is. We aim to computationally extract imaging biomarkers from existing tumor diagnostic slides in order to predict FGFR alterations in bladder cancer. METHODS This study analyzed genomic profiles and H&E-stained tumor diagnostic slides of bladder cancer cases from The Cancer Genome Atlas (n = 418 cases). A convolutional neural network (CNN) identified tumor-infiltrating lymphocytes (TIL). The percentage of the tissue containing TIL ("TIL percentage") was then used to predict FGFR activation status with a logistic regression model. RESULTS This predictive model could proficiently identify patients with any type of FGFR gene aberration using the CNN-based TIL percentage (sensitivity = 0.89, specificity = 0.42, AUROC = 0.76). A similar model which focused on predicting patients with only FGFR2/FGFR3 mutation was also found to be highly sensitive, but also specific (sensitivity = 0.82, specificity = 0.85, AUROC = 0.86). CONCLUSION TIL percentage is a computationally derived image biomarker from routine tumor histology that can predict whether a tumor has FGFR mutations. CNNs and other digital pathology methods may complement genome sequencing and provide earlier screening options for candidates of targeted therapies.
Collapse
Affiliation(s)
| | | | - Ying‐Chun Lo
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| |
Collapse
|
5
|
Abstract
Positron emission tomography (PET)/computed tomography (CT) are nuclear diagnostic imaging modalities that are routinely deployed for cancer staging and monitoring. They hold the advantage of detecting disease related biochemical and physiologic abnormalities in advance of anatomical changes, thus widely used for staging of disease progression, identification of the treatment gross tumor volume, monitoring of disease, as well as prediction of outcomes and personalization of treatment regimens. Among the arsenal of different functional imaging modalities, nuclear imaging has benefited from early adoption of quantitative image analysis starting from simple standard uptake value normalization to more advanced extraction of complex imaging uptake patterns; thanks to application of sophisticated image processing and machine learning algorithms. In this review, we discuss the application of image processing and machine/deep learning techniques to PET/CT imaging with special focus on the oncological radiotherapy domain as a case study and draw examples from our work and others to highlight current status and future potentials.
Collapse
Affiliation(s)
- Lise Wei
- Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI
| | - Issam El Naqa
- Department of Radiation Oncology, Physics Division, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
6
|
Hirata K, Tamaki N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers (Basel) 2021; 13:cancers13040869. [PMID: 33669531 PMCID: PMC7922629 DOI: 10.3390/cancers13040869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary PET enables quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour metabolic activity. Quantitative assessment of FDG uptake can be applied for treatment monitoring. Numerous studies indicated biochemical change assessed by FDG-PET as a more sensitive marker than morphological change. Those with complete metabolic response after therapy may show better prognosis. Assessment of metabolic change may be performed using absolute FDG uptake or metabolic tumour volume. More recently, radiomics approaches have been applied to FDG PET. Texture analysis quantifies intratumoral heterogeneity in a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours. Abstract Positron emission tomography (PET) has unique characteristics for quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour characteristics based on its metabolic activity. Quantitative assessment of FDG uptake can often be applied for treatment monitoring after chemotherapy or chemoradiotherapy. Numerous studies indicated biochemical change assessed by FDG PET as a more sensitive marker than morphological change estimated by CT or MRI. In addition, those with complete metabolic response after therapy may show better disease-free survival and overall survival than those with other responses. Assessment of metabolic change may be performed using absolute FDG uptake in the tumour (standardized uptake value: SUV). In addition, volumetric parameters such as metabolic tumour volume (MTV) have been introduced for quantitative assessment of FDG uptake in tumour. More recently, radiomics approaches that focus on image-based precision medicine have been applied to FDG PET, as well as other radiological imaging. Among these, texture analysis extracts intratumoral heterogeneity on a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours, although multicentre clinical trials are needed before application in clinical settings.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence:
| |
Collapse
|
7
|
Deep learning in Nuclear Medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00411-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS One 2020; 15:e0237213. [PMID: 32797099 PMCID: PMC7428190 DOI: 10.1371/journal.pone.0237213] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Bone metastasis is one of the most frequent diseases in prostate cancer; scintigraphy imaging is particularly important for the clinical diagnosis of bone metastasis. Up to date, minimal research has been conducted regarding the application of machine learning with emphasis on modern efficient convolutional neural networks (CNNs) algorithms, for the diagnosis of prostate cancer metastasis from bone scintigraphy images. The advantageous and outstanding capabilities of deep learning, machine learning's groundbreaking technological advancement, have not yet been fully investigated regarding their application in computer-aided diagnosis systems in the field of medical image analysis, such as the problem of bone metastasis classification in whole-body scans. In particular, CNNs are gaining great attention due to their ability to recognize complex visual patterns, in the same way as human perception operates. Considering all these new enhancements in the field of deep learning, a set of simpler, faster and more accurate CNN architectures, designed for classification of metastatic prostate cancer in bones, is explored. This research study has a two-fold goal: to create and also demonstrate a set of simple but robust CNN models for automatic classification of whole-body scans in two categories, malignant (bone metastasis) or healthy, using solely the scans at the input level. Through a meticulous exploration of CNN hyper-parameter selection and fine-tuning, the best architecture is selected with respect to classification accuracy. Thus a CNN model with improved classification capabilities for bone metastasis diagnosis is produced, using bone scans from prostate cancer patients. The achieved classification testing accuracy is 97.38%, whereas the average sensitivity is approximately 95.8%. Finally, the best-performing CNN method is compared to other popular and well-known CNN architectures used for medical imaging, like VGG16, ResNet50, GoogleNet and MobileNet. The classification results show that the proposed CNN-based approach outperforms the popular CNN methods in nuclear medicine for metastatic prostate cancer diagnosis in bones.
Collapse
Affiliation(s)
| | - Elpiniki Papageorgiou
- Faculty of Technology, Dept. of Energy Systems, University of Thessaly, Geopolis Campus, Larisa, Greece
- Institute for Bio-economy and Agri-technology, Center for Research and Technology Hellas, Greece
| | - Athanasios Anagnostis
- Institute for Bio-economy and Agri-technology, Center for Research and Technology Hellas, Greece
- Department of Computer Science and Telecommunications, University of Thessaly, Lamia, Greece
| | | |
Collapse
|
9
|
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Efficient Bone Metastasis Diagnosis in Bone Scintigraphy Using a Fast Convolutional Neural Network Architecture. Diagnostics (Basel) 2020; 10:diagnostics10080532. [PMID: 32751433 PMCID: PMC7459937 DOI: 10.3390/diagnostics10080532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Bone metastasis is among diseases that frequently appear in breast, lung and prostate cancer; the most popular imaging method of screening in metastasis is bone scintigraphy and presents very high sensitivity (95%). In the context of image recognition, this work investigates convolutional neural networks (CNNs), which are an efficient type of deep neural networks, to sort out the diagnosis problem of bone metastasis on prostate cancer patients; (2) Methods: As a deep learning model, CNN is able to extract the feature of an image and use this feature to classify images. It is widely applied in medical image classification. This study is devoted to developing a robust CNN model that efficiently and fast classifies bone scintigraphy images of patients suffering from prostate cancer, by determining whether or not they develop metastasis of prostate cancer. The retrospective study included 778 sequential male patients who underwent whole-body bone scans. A nuclear medicine physician classified all the cases into three categories: (a) benign, (b) malignant and (c) degenerative, which were used as gold standard; (3) Results: An efficient and fast CNN architecture was built, based on CNN exploration performance, using whole body scintigraphy images for bone metastasis diagnosis, achieving a high prediction accuracy. The results showed that the method is sufficiently precise when it comes to differentiate a bone metastasis case from other either degenerative changes or normal tissue cases (overall classification accuracy = 91.61% ± 2.46%). The accuracy of prostate patient cases identification regarding normal, malignant and degenerative changes was 91.3%, 94.7% and 88.6%, respectively. To strengthen the outcomes of this study the authors further compared the best performing CNN method to other popular CNN architectures for medical imaging, like ResNet50, VGG16, GoogleNet and MobileNet, as clearly reported in the literature; and (4) Conclusions: The remarkable outcome of this study is the ability of the method for an easier and more precise interpretation of whole-body images, with effects on the diagnosis accuracy and decision making on the treatment to be applied.
Collapse
Affiliation(s)
| | - Elpiniki Papageorgiou
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis Campus, Larissa-Trikala Ring Road, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-6936064613
| | - Athanasios Anagnostis
- Center for Research and Technology—Hellas (CERTH), Institute for Bio-Economy and Agri-Technology (iBO), 57001 Thessaloniki, Greece;
- Department of Computer Science and Telecommunications, University of Thessaly, 35131 Lamia, Greece;
| | | |
Collapse
|
10
|
A Deep-Learning Approach for Diagnosis of Metastatic Breast Cancer in Bones from Whole-Body Scans. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030997] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
(1) Background: Bone metastasis is one of the most frequent diseases in breast, lung and prostate cancer; bone scintigraphy is the primary imaging method of screening that offers the highest sensitivity (95%) regarding metastases. To address the considerable problem of bone metastasis diagnosis, focused on breast cancer patients, artificial intelligence methods devoted to deep-learning algorithms for medical image analysis are investigated in this research work; (2) Methods: Deep learning is a powerful algorithm for automatic classification and diagnosis of medical images whereas its implementation is achieved by the use of convolutional neural networks (CNNs). The purpose of this study is to build a robust CNN model that will be able to classify images of whole-body scans in patients suffering from breast cancer, depending on whether or not they are infected by metastasis of breast cancer; (3) Results: A robust CNN architecture is selected based on CNN exploration performance for bone metastasis diagnosis using whole-body scan images, achieving a high classification accuracy of 92.50%. The best-performing CNN method is compared with other popular and well-known CNN architectures for medical imaging like ResNet50, VGG16, MobileNet, and DenseNet, reported in the literature, providing superior classification accuracy; and (4) Conclusions: Prediction results show the efficacy of the proposed deep learning approach in bone metastasis diagnosis for breast cancer patients in nuclear medicine.
Collapse
|