1
|
Harapas CR, Robinson KS, Lay K, Wong J, Traspas RM, Nabavizadeh N, Rass-Rothschild A, Boisson B, Drutman SB, Laohamonthonkul P, Bonner D, Xiong JR, Gorrell MD, Davidson S, Yu CH, Fleming MD, Gudera J, Stein J, Ben-Harosh M, Groopman E, Shimamura A, Tamary H, Kayserili H, Hatipoğlu N, Casanova JL, Bernstein JA, Zhong FL, Masters SL, Reversade B. DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling. Sci Immunol 2022; 7:eabi4611. [PMID: 36112693 PMCID: PMC9844213 DOI: 10.1126/sciimmunol.abi4611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1β signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.
Collapse
Affiliation(s)
- Cassandra R. Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kim S. Robinson
- Skin Research Institute of Singapore (SRIS), A*STAR, Singapore
- Skin Research Laboratories (ASRL), A*STAR, Singapore
| | - Kenneth Lay
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore
| | - Jasmine Wong
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore
| | - Ricardo Moreno Traspas
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore
| | - Nasrin Nabavizadeh
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore
| | - Annick Rass-Rothschild
- The Institute for Rare Diseases, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Paris University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Disease, Necker Branch, INSERM U1163, Paris, France
| | - Scott B. Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Devon Bonner
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Mark D. Gorrell
- Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonas Gudera
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU Klinikum Munich, Munich, Germany
| | - Jerry Stein
- The Rina Zaizov Hematology-Oncology Division, Schneider Children’s Medical Center of Israel, Felsenstain Medical Research Center, Tel-Aviv University, Israel
| | - Miriam Ben-Harosh
- Department of Pediatric Hemato-Oncology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Emily Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Hannah Tamary
- The Rina Zaizov Hematology-Oncology Division, Schneider Children’s Medical Center of Israel, Felsenstain Medical Research Center, Tel-Aviv University, Israel
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Nevin Hatipoğlu
- Department of Pediatric Infection, Health Science University, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Paris University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Disease, Necker Branch, INSERM U1163, Paris, France
- Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, USA
| | | | - Franklin L. Zhong
- Skin Research Institute of Singapore (SRIS), A*STAR, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A*STAR, Singapore
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
- Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore
| |
Collapse
|
2
|
Cui C, Tian X, Wei L, Wang Y, Wang K, Fu R. New insights into the role of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 and their inhibitors. Front Pharmacol 2022; 13:1002871. [PMID: 36172198 PMCID: PMC9510841 DOI: 10.3389/fphar.2022.1002871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are widely expressed in mammals including humans, mainly locate in the cytoplasm. The DPP8 and DPP9 (DPP8/9) belong to serine proteolytic enzymes, they can recognize and cleave N-terminal dipeptides of specific substrates if proline is at the penultimate position. Because the localization of DPP8/9 is different from that of DPP4 and the substrates for DPP8/9 are not yet completely clear, their physiological and pathological roles are still being further explored. In this article, we will review the recent research advances focusing on the expression, regulation, and functions of DPP8/9 in physiology and pathology status. Emerging research results have shown that DPP8/9 is involved in various biological processes such as cell behavior, energy metabolism, and immune regulation, which plays an essential role in maintaining normal development and physiological functions of the body. DPP8/9 is also involved in pathological processes such as tumorigenesis, inflammation, and organ fibrosis. In recent years, related research on immune cell pyroptosis has made DPP8/9 a new potential target for the treatment of hematological diseases. In addition, DPP8/9 inhibitors also have great potential in the treatment of tumors and chronic kidney disease.
Collapse
Affiliation(s)
- Chenkai Cui
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Linting Wei
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinhong Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kexin Wang
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Rongguo Fu,
| |
Collapse
|