1
|
Luosang D, Gao Y, Hong L, Jiang N, Basang W. Transcriptome analysis reveals the potential mechanism of plateau environment on muscle growth and development in yak. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101395. [PMID: 39689405 DOI: 10.1016/j.cbd.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Yak meat plays a significant economic role for yaks. The unique environment of the Qinghai-Tibet plateau profoundly impacts the meat production performance of yaks. Yet, the regulatory mechanisms influencing muscle growth and development in yaks within this plateau environment remain poorly understood. The study investigated the transcriptome gene expression in the buttock muscle tissue of yaks residing at varying altitudes. It revealed 516 differentially expressed genes in the buttock muscle tissue of yaks at high altitude (4500 m) and low altitude (3000 m). The Gene Ontology (GO) annotation indicated that these differentially expressed genes primarily function in RNA binding, identical protein binding, nucleotide binding, pre-mRNA branch point binding, unfolded protein binding, insulin receptor binding, fructose 1,6-bisphosphate 1-phosphatase activity, collagen binding, platelet-derived growth factor receptor binding, and sodium channel inhibitor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes predominantly participated in pathways such as the spliceosome, aminoacyl tRNA biosynthesis, RNA polymerase, cutin, suberin, and wax biosynthesis, ribosome biogenesis in eukaryotes, plant hormone signal transduction, axon guidance, fructose and mannose metabolism, pentose phosphate pathway, and gastric acid secretion. This study unveiled the impact of the plateau environment on transcriptome gene expression in yak buttock muscle tissue, mapping out the gene expression profiles specific to yaks living at varying altitudes (3000 m and 4500 m). The findings offer crucial genomic insights into the mechanisms behind yak muscle adaptation to plateau environments.
Collapse
Affiliation(s)
- Dunzhu Luosang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, Tibet 850000, China
| | - Yang Gao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, Tibet 850000, China.
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, Tibet 850000, China.
| |
Collapse
|
2
|
Cui C, Chen S, Mi B, Qi Y, Jiao C, Zhang M, Dai Y, Wang X, Hu J, Shi B, Wang J, Zhao Z, Liu X, Zhang X. Transcriptomic and Metabolomic Insights into Age-Related Changes in Lung Tissue of Yaks Under Highland Stress. Int J Mol Sci 2024; 25:12071. [PMID: 39596139 PMCID: PMC11593661 DOI: 10.3390/ijms252212071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
As an indigenous species on the Tibetan Plateau, the yak is well adapted to the plateau hypoxic environment. The high-altitude hypoxia adaptation of the yak requires the adaptive reshaping of multiple tissues and organs, especially the lungs. To reveal the adaptive development of yak lungs under hypoxic stress at the tissue and molecular levels, we conducted histomorphological observations as well as transcriptomic and metabolomic studies of yak lungs at three ages (0.5, 2.5, and 4.5 years). The results showed that the lung tissue developed significantly with age. The mean alveolar area was higher (p < 0.01) in 4.5 and 2.5-year-old yaks than in 0.5-year-old yaks. The percentage of elastic fibers, micro-arterial wall thickness, and micro-arterial area showed an increasing trend (p < 0.01) from 0.5-year-old yaks to 2.5-year-old yaks and then to 4.5-year-old yaks. In addition, some critical differentially expressed genes related to angiogenesis (MYC, EPHA2, TNF), fiber formation (EREG), smooth muscle proliferation (HBEGF), erythropoiesis (SOCS3), and hypoxia response (ZFP36) were identified. Some metabolites associated with these genes were also found simultaneously. These findings provide a deeper understanding of the molecular strategies underlying this species' extraordinary ability to survive normally in low-oxygen environments. In conclusion, the lungs of yaks undergo continuous adaptive development under hypoxic stress, and these findings are crucial for understanding the molecular mechanisms by which native species of the Tibetan Plateau survive in harsh environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.C.); (S.C.); (B.M.); (Y.Q.); (C.J.); (M.Z.); (Y.D.); (X.W.); (J.W.); (Z.Z.); (X.L.); (X.Z.)
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.C.); (S.C.); (B.M.); (Y.Q.); (C.J.); (M.Z.); (Y.D.); (X.W.); (J.W.); (Z.Z.); (X.L.); (X.Z.)
| | | | | | | | | |
Collapse
|
3
|
Niu Y, Zhang X, Zhang H, Men S, Xu T, Ding L, Li X, Wang L, Wang H, Storey KB, Chen Q. Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives. BMC Biol 2024; 22:231. [PMID: 39390465 PMCID: PMC11465660 DOI: 10.1186/s12915-024-02033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. RESULTS Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. CONCLUSIONS Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Li Ding
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Lei Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Huisong Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Li J, Huang N, Zhang X, Sun C, Chen J, Wei Q. Changes of collagen content in lung tissues of plateau yak and its mechanism of adaptation to hypoxia. PeerJ 2024; 12:e18250. [PMID: 39372716 PMCID: PMC11451445 DOI: 10.7717/peerj.18250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Collagen is crucial for tissue structure, functional maintenance, and cellular processes such as proliferation and differentiation. However, the specific changes in collagen expression and its associated genes in the lung tissues of yaks at high altitudes and their relationship with environmental adaptation remain poorly understood. Studying differences in the content of collagen fibers and gene expression between yaks at high (4,500 m) and low (2,600 m) altitudes, as well as between cattle at low altitudes (2,600 m). Using Masson staining, we found that the collagen fiber content in the lung tissues of yaks at low altitude was significantly higher compared to yaks at high altitude and cattle at the same altitude (P < 0.05). It was revealed through transcriptomic analyses that genes differentially expressed between high and low altitude yaks, as well as between low altitude yaks and cattle, were notably enriched in pathways related to cell adhesion, collagen synthesis, focal adhesion, and ECM-receptor interactions. Specifically, genes involved in mesenchymal collagen synthesis (e.g., COL1A1, COL1A2, COL3A1), basement membrane collagen synthesis (e.g., COL4A1, COL4A2, COL4A4, COL4A6), and peripheral collagen synthesis (e.g., COL5A1, COL6A1, COL6A2, COL6A3) were significantly upregulated in the lung tissues of yaks at low altitude compared to their high altitude counterparts and cattle (P < 0.05). In conclusion, yaks at lower altitudes exhibit increased collagen synthesis by upregulating collagen gene expression, which contributes to maintaining alveolar stability and septal flexibility. Conversely, the expression of collagen genes in yak lung tissues was down-regulated with the increase in altitude, and it was speculated that the decrease in collagen may be used to constrain the function of elastic fibers that are more abundant at high altitude, so as to enable them to adapt to the harsh environment with hypoxia and high altitude. This adaptation mechanism highlights the role of collagen in environmental acclimatization and contributes to our understanding of how altitude and species influence collagen-related physiological processes in yaks.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Ci Sun
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
5
|
Jiang H, Chai ZX, Chen XY, Zhang CF, Zhu Y, Ji QM, Xin JW. Yak genome database: a multi-omics analysis platform. BMC Genomics 2024; 25:346. [PMID: 38580907 PMCID: PMC10998334 DOI: 10.1186/s12864-024-10274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, 610041, Chengdu, Sichuan, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China.
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China.
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, 850000, Lhasa, Tibet, China.
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, 850000, Lhasa, Tibet, China.
| |
Collapse
|
6
|
Ahmad HI, Mahmood S, Hassan M, Sajid M, Ahmed I, Shokrollahi B, Shahzad AH, Abbas S, Raza S, Khan K, Muhammad SA, Fouad D, Ataya FS, Li Z. Genomic insights into Yak (Bos grunniens) adaptations for nutrient assimilation in high-altitudes. Sci Rep 2024; 14:5650. [PMID: 38453987 PMCID: PMC10920680 DOI: 10.1038/s41598-024-55712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
High-altitude environments present formidable challenges for survival and reproduction, with organisms facing limited oxygen availability and scarce nutrient resources. The yak (Bos grunniens), indigenous to the Tibetan Plateau, has notably adapted to these extreme conditions. This study delves into the genomic basis of the yak's adaptation, focusing on the positive selection acting on genes involved in nutrient assimilation pathways. Employing techniques in comparative genomics and molecular evolutionary analyses, we selected genes in the yak that show signs of positive selection associated with nutrient metabolism, absorption, and transport. Our findings reveal specific genetic adaptations related to nutrient metabolism in harsh climatic conditions. Notably, genes involved in energy metabolism, oxygen transport, and thermoregulation exhibited signs of positive selection, suggesting their crucial role in the yak's successful colonization of high-altitude regions. The study also sheds light on the yak's immune system adaptations, emphasizing genes involved in response to various stresses prevalent at elevated altitudes. Insights into the yak's genomic makeup provide valuable information for understanding the broader implications of high-altitude adaptations in mammalian evolution. They may contribute to efforts in enhancing livestock resilience to environmental challenges.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Mubashar Hassan
- Department of Clinical Sciences, College of Veterinary and Animal Sciences (Sub campus UVAS, Lahore), Jhang, 35200, Pakistan
| | - Muhammad Sajid
- Department of Pathobiology, College of Veterinary and Animal Sciences (Sub campus UVAS, Lahore), Jhang, 35200, Pakistan
| | - Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Abid Hussain Shahzad
- Department of Clinical Sciences, College of Veterinary and Animal Sciences (Sub campus UVAS, Lahore), Jhang, 35200, Pakistan
| | - Shaista Abbas
- Department of Physiology and Biochemistry, College of Veterinary and Animal Sciences, Jhang, 35200, Pakistan
| | - Sanan Raza
- Department of Clinical Sciences, College of Veterinary and Animal Sciences (Sub campus UVAS, Lahore), Jhang, 35200, Pakistan
| | - Komal Khan
- Department of Basic Sciences, Anatomy Section, College of Veterinary and Animal Sciences, Jhang, 35200, Pakistan
| | - Sayyed Aun Muhammad
- Department of Clinical Sciences, College of Veterinary and Animal Sciences (Sub campus UVAS, Lahore), Jhang, 35200, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, 11495, Riyadh, Saudi Arabia
| | - Zhengtian Li
- Qujing Normal University, College of Biological Resource and Food Engineering, 655011, Yunnan, China.
| |
Collapse
|
7
|
Yu T, Zhang C, Song W, Zhao X, Cheng Y, Liu J, Su J. Single-cell RNA-seq and single-cell bisulfite-sequencing reveal insights into yak preimplantation embryogenesis. J Biol Chem 2024; 300:105562. [PMID: 38097189 PMCID: PMC10821408 DOI: 10.1016/j.jbc.2023.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengtu Zhang
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, Qinghai, China
| | - Weijia Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyao Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Zhang Y, Zhou M, Liang Y, Li R, Zhang L, Chen S, Yang K, Ding H, Tan X, Zhang Q, Qiao Z. Study of Transcriptomic Analysis of Yak ( Bos grunniens) and Cattle ( Bos taurus) Pulmonary Artery Smooth Muscle Cells under Oxygen Concentration Gradients and Differences in Their Lung Histology and Expression of Pyruvate Dehydrogenase Kinase 1-Related Factors. Animals (Basel) 2023; 13:3450. [PMID: 38003068 PMCID: PMC10668684 DOI: 10.3390/ani13223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.
Collapse
Affiliation(s)
- Yiyang Zhang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Manlin Zhou
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Yuxin Liang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Rui Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Lan Zhang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Shuwu Chen
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Kun Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Haie Ding
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Xiao Tan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| |
Collapse
|
9
|
Mei Q, Zheng R, Li J, Ma X, Wang L, Wei Y, Luo X, Guan J, Zhang X. Transcriptomic analysis reveals differentially expressed genes and key immune pathways in the spleen of the yak (Bos grunniens) at different growth stage. Gene 2023; 884:147743. [PMID: 37640116 DOI: 10.1016/j.gene.2023.147743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Yak is one of the rare and unique cattle species on the Qinghai-Tibetan Plateau, which has strong adaptability to the extreme environment of the plateau. The spleens are important functional organs that enable animals to adapt to their external environment and are vital in the growth and development process. To further investigate changes in immune function during yak development, we compared the transcriptome profiles of spleen tissues among juvenile (1-day old), youth (15-months old), and prime (5-years old) yaks. Immunology of spleen development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. In this work, we found 6378 genes with significant differences between the spleen of juvenile yak and youth yak, with the largest difference between groups. There were 3144 genes with significant differences between the spleen of young yak and prime yak, with the smallest differences between groups. Further, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the functional annotation of these genes. GO and KEGG analysis showed that some of them were related to growth, disease, immune, and metabolism. However, the genetic mechanism underlying the adaptability of yak spleens at different ages to harsh plateau environments remains unknown. These findings are important for studying the mechanisms of spleen development in yaks of different age groups.
Collapse
Affiliation(s)
- Qundi Mei
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Rui Zheng
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Xuefeng Ma
- Chongqing Institute for Food and Drug Control, Chongqing 404100, China.
| | - Li Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, Chengdu 610066, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China.
| |
Collapse
|
10
|
Xin JW, Chai ZX, Jiang H, Cao HW, Chen XY, Zhang CF, Zhu Y, Zhang Q, Ji QM. Genome-wide comparison of DNA methylation patterns between yak and three cattle strains and their potential association with mRNA transcription. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:316-328. [PMID: 36148637 DOI: 10.1002/jez.b.23174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 05/11/2023]
Abstract
Yak has evolved specific adaptative mechanisms to high-altitude environment. Up to date, only a few studies reported the DNA methylation in yak. In the present study, genome-wide DNA methylome and transcriptome profiles in lung, mammary, and biceps brachii muscle tissues were compared between yak and three cattle breeds (Tibetan cattle, Sanjiang cattle, and Holstein cattle). The association between differentially expressed genes (DEGs) and differentially methylated regions (DMRs) was analyzed, and the biological functions of DEGs potentially driven by DMRs were explored by KEGG enrichment analysis. Finally, we found that yak-specific DMRs-driven DEGs were mainly involved in neuromodulation, respiration, lung development, blood pressure regulation, cardiovascular protection, energy metabolism, DNA repair, and immune functions. The higher levels of the key genes associated with these functions were observed in yak than in cattle, suggesting that DNA methylation might regulate these genes. Overall, the present study contributes basic data at the DNA methylation level to further understand the physiological metabolism in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
11
|
Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation. Integr Zool 2023; 18:225-236. [PMID: 36049502 DOI: 10.1111/1749-4877.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Tibetan Partridge (Perdix hodgsoniae) is an endemic species distributed in high-altitude areas of 3600-5600 m on the Qinghai-Tibet Plateau. To explore how the species is adapted to the high elevation environment, we assembled a draft genome based on both the Illumina and PacBio sequencing platforms with its population genetics and genomics analysis. In total, 134.74 Gb short reads and 30.81 Gb long reads raw data were generated. The 1.05-Gb assembled genome had a contig N50 of 4.56 Mb, with 91.94% complete BUSCOs. The 17 457 genes were annotated, and 11.35% of the genome was composed of repeat sequences. The phylogenetic tree showed that P. hodgsoniae was located at the basal position of the clade, including Golden Pheasant (Chrysolophus pictus), Common Pheasant (Phasianus colchicus), and Mikado Pheasant (Syrmaticus mikado). We found that 1014, 2595, and 2732 of the 6641 one-to-one orthologous genes were under positive selection in P. hodgsoniae, detected using PAML, BUSTED, and aBSREL programs, respectively, of which 965 genes were common under positive selection with 3 different programs. Several positively selected genes and immunity pathways relevant to high-altitude adaptation were detected. Gene family evolution showed that 99 gene families experienced significant expansion events, while 6 gene families were under contraction. The total number of olfactory receptor genes was relatively low in P. hodgsoniae. Genomic data provide an important resource for a further study on the evolutionary history of P. hodgsoniae, which provides a new insight into its high-altitude adaptation mechanisms.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engeering, Xi'an University, Xi'an, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Zhao C, Wang L, Ke S, Chen X, Kenéz Á, Xu W, Wang D, Zhang F, Li Y, Cui Z, Qiao Y, Wang J, Sun W, Zhao J, Yao J, Yu Z, Cao Y. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. ANIMAL NUTRITION 2022; 11:201-214. [PMID: 36263411 PMCID: PMC9556794 DOI: 10.1016/j.aninu.2022.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Rumen microbes play an important role in ruminant energy supply and animal performance. Previous studies showed that yak (Bos grunniens) rumen microbiome and fermentation differ from other ruminants. However, little is understood about the features of the rumen microbiome that make yak adapted to their unique environmental and dietary conditions. This study was to investigate the rumen microbiome and metabolome to understand how yak adapt to the coarse forage and harsh environment in the Qinghai-Tibetan plateau. Nine female Qaidam yellow cattle (Bos taurus), 9 dzomo (hybrids of cattle and yak) and 9 female plateau yak (B. grunniens), about 5 to 6 years old, were used in this study. Rumen fermentation parameters, fibrolytic enzyme activities, and rumen metataxonomic were determined. Then 18 (6 samples per group) were selected for rumen metagenomic and metabolome analysis. Metataxonomic analysis revealed that the rumen microbiota was significantly different among plateau yak, Qaidam yellow cattle, and dzomo (P < 0.05). Metagenomic analysis displayed a larger gene pool encoding a richer repertoire of carbohydrate-active enzymes in the rumen microbiome of plateau yak and dzomo than Qaidam yellow cattle (P < 0.05). Some of the genes encoding glycoside hydrolases that mediate the digestion of cellulose and hemicellulose were significantly enriched in the rumen of plateau yak than Qaidam yellow cattle, but glycoside hydrolase 57 that primarily includes amylases was abundant in Qaidam yellow cattle (P < 0.05). The rumen fermentation profile differed also, Qaidam yellow cattle having a higher molar proportion of acetate but a lower molar proportion of propionate than dzomo and plateau yak (P < 0.05). Based on metabolomic analysis, rumen microbial metabolic pathways and metabolites were different. Differential metabolites are mainly amino acids, carboxylic acids, sugars, and bile acids. Changes in rumen microbial composition could explain the above results. The present study showed that the rumen microbiome of plateau yak helps its host to adapt to the Qinghai-Tibetan plateau. In particular, the plateau yak rumen microbiome has more enzymes genes involved in cellulase and hemicellulase than that of cattle, resulting higher fibrolytic enzyme activities in yak, further providing stronger fiber degradation function.
Collapse
|
13
|
Liu Y, Cheng H, Wang S, Luo X, Ma X, Sun L, Chen N, Zhang J, Qu K, Wang M, Liu J, Huang B, Lei C. Genomic Diversity and Selection Signatures for Weining Cattle on the Border of Yunnan-Guizhou. Front Genet 2022; 13:848951. [PMID: 35873486 PMCID: PMC9301131 DOI: 10.3389/fgene.2022.848951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Weining cattle is a Chinese indigenous breed influenced by complex breeding and geographical background. The multi-ethnic breeding culture makes Weining cattle require more attention as livestock resources for its genetic diversity. Here, we used 10 Weining cattle (five newly sequenced and five downloaded) and downloaded another 48 genome data to understand the aspects of Weining cattle: genetic diversity, population structure, and cold-adapted performance. In the current study, a high level of genetic diversity was found in Weining cattle, and its breed comprised two potential ancestries, which were Bos taurus and Bos indicus. The positive selective sweep analysis in Weining cattle was analyzed using composite likelihood ratio (CLR) and nucleotide diversity (θπ), resulting in 203 overlapped genes. In addition, we studied the cold adaptation of Weining cattle by comparing with other Chinese cattle (Wannan and Wenshan cattle) by three methods (FST, θπ-ratio, and XP-EHH). Of the top 1% gene list, UBE3D and ZNF668 were analyzed, and these genes may be associated with fat metabolism and blood pressure regulation in cold adaptation. Our findings have provided invaluable information for the development and conservation of cattle genetic resources, especially in southwest China.
Collapse
Affiliation(s)
- Yangkai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyv Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohui Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Mingjin Wang
- Bijie Animal Husbandry and Veterinary Science Institute, Bijie, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
- *Correspondence: Bizhi Huang, ; Chuzhao Lei,
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Bizhi Huang, ; Chuzhao Lei,
| |
Collapse
|
14
|
Zhao P, Zhao F, Hu J, Wang J, Liu X, Zhao Z, Xi Q, Sun H, Li S, Luo Y. Physiology and Transcriptomics Analysis Reveal the Contribution of Lungs on High-Altitude Hypoxia Adaptation in Tibetan Sheep. Front Physiol 2022; 13:885444. [PMID: 35634140 PMCID: PMC9133604 DOI: 10.3389/fphys.2022.885444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023] Open
Abstract
The Tibetan sheep is an indigenous species on the Tibetan plateau with excellent adaptability to high-altitude hypoxia and is distributed at altitudes of 2500–5000 m. The high-altitude hypoxia adaptation of Tibetan sheep requires adaptive reshaping of multiple tissues and organs, especially the lungs. To reveal the mechanisms of adaptation at the tissue and molecular levels in the lungs of Tibetan sheep under hypoxic conditions at different altitudes, we performed light and electron microscopic observations, transcriptomic sequencing, and enzyme-linked immunosorbent assay studies on the lungs of Tibetan sheep from three altitudes (2500, 3500, and 4500 m). The results showed that in addition to continuous increase in pulmonary artery volume, thickness, and elastic fiber content with altitude, Tibetan sheep increase the hemoglobin concentration at an altitude of 3500 m, while they decrease the Hb concentration and increase the surface area of gas exchange and capacity of the blood at an altitude of 4500 m. Other than that, some important differentially expressed genes related to angiogenesis (FNDC1, HPSE, and E2F8), vasomotion and fibrogenesis (GJA4, FAP, COL1A1, COL1A2, COL3A1, and COL14A1), and gas transport (HBB, HBA1, APOLD1, and CHL1) were also identified; these discoveries at the molecular level explain to some extent the physiological findings. In conclusion, the lungs of Tibetan sheep adopt different strategies when adapting to different altitudes, and these findings are valuable for understanding the basis of survival of indigenous species on the Tibetan plateau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaobin Li
- *Correspondence: Shaobin Li, ; Yuzhu Luo,
| | - Yuzhu Luo
- *Correspondence: Shaobin Li, ; Yuzhu Luo,
| |
Collapse
|
15
|
Ma J, Zhang T, Wang W, Chen Y, Cai W, Zhu B, Xu L, Gao H, Zhang L, Li J, Gao X. Comparative Transcriptome Analyses of Gayal (Bos frontalis), Yak (Bos grunniens), and Cattle (Bos taurus) Reveal the High-Altitude Adaptation. Front Genet 2022; 12:778788. [PMID: 35087567 PMCID: PMC8789257 DOI: 10.3389/fgene.2021.778788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Gayal and yak are well adapted to their local high-altitude environments, yet the transcriptional regulation difference of the plateau environment among them remains obscure. Herein, cross-tissue and cross-species comparative transcriptome analyses were performed for the six hypoxia-sensitive tissues from gayal, yak, and cattle. Gene expression profiles for all single-copy orthologous genes showed tissue-specific expression patterns. By differential expression analysis, we identified 3,020 and 1,995 differentially expressed genes (DEGs) in at least one tissue of gayal vs. cattle and yak vs. cattle, respectively. Notably, we found that the adaptability of the gayal to the alpine canyon environment is highly similar to the yak living in the Qinghai-Tibet Plateau, such as promoting red blood cell development, angiogenesis, reducing blood coagulation, immune system activation, and energy metabolism shifts from fatty acid β-oxidation to glycolysis. By further analyzing the common and unique DEGs in the six tissues, we also found that numerous expressed regulatory genes related to these functions are unique in the gayal and yak, which may play important roles in adapting to the corresponding high-altitude environment. Combined with WGCNA analysis, we found that UQCRC1 and COX5A are the shared differentially expressed hub genes related to the energy supply of myocardial contraction in the heart-related modules of gayal and yak, and CAPS is a shared differential hub gene among the hub genes of the lung-related module, which is related to pulmonary artery smooth muscle contraction. Additionally, EDN3 is the unique differentially expressed hub gene related to the tracheal epithelium and pulmonary vasoconstriction in the lung of gayal. CHRM2 is a unique differentially expressed hub gene that was identified in the heart of yak, which has an important role in the autonomous regulation of the heart. These results provide a basis for further understanding the complex transcriptome expression pattern and the regulatory mechanism of high-altitude domestication of gayal and yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junya Li
- *Correspondence: Junya Li, ; Xue Gao,
| | - Xue Gao
- *Correspondence: Junya Li, ; Xue Gao,
| |
Collapse
|
16
|
Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of the longissimus thoracis of yaks. Curr Res Food Sci 2022; 5:1494-1507. [PMID: 36132491 PMCID: PMC9483648 DOI: 10.1016/j.crfs.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Yaks (Bos mutus) live in the Qinghai–Tibet plateau. The quality of yak meat is unique due to its genetic and physiological characteristics. Identification of the proteome of yak muscle could help to reveal its meat-quality properties. The common proteome, phosphoproteome, and N-glycoproteome of yak longissimus thoracis (YLT) were analyzed by liquid chromatography-tandem mass spectrometry-based shotgun analysis. A total of 1812 common proteins, 1303 phosphoproteins (3918 phosphorylation sites), and 204 N-glycoproteins (285 N-glycosylation sites) were identified in YLT. The common proteins in YLT were involved mainly in myofibril structure and energy metabolism; phosphoproteins were associated primarily with myofibril organization, regulation of energy metabolism, and signaling; N-glycoproteins were engaged mainly in extracellular-matrix organization, cellular immunity, and organismal homeostasis. We reported, for the first time, the “panorama” of the YLT proteome, specifically the N-glycoproteome of YLT. Our results provide essential information for understanding post mortem physiology (rigor mortis and aging) and the quality of yak meat.
A total of 2650 proteins were identified in yak longissimus thoracis. Common proteins were involved mainly in myofibril structure and energy metabolism. Phosphoproteins were associated with myofibrils, energy metabolism, and signaling. N-glycoproteins were engaged mainly in ECM organization, immunity, and homeostasis.
Collapse
|
17
|
Huang M, Zhang X, Yan W, Liu J, Wang H. Metabolomics reveals potential plateau adaptability by regulating
inflammatory response and oxidative stress-related metabolism and energy
metabolism pathways in yak. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:97-109. [PMID: 35174345 PMCID: PMC8819316 DOI: 10.5187/jast.2021.e129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Species are facing strong selection pressures to adapt to inhospitable
high-altitude environments. Yaks are a valuable species and an iconic symbol of
the Qinghai-Tibet Plateau. Extensive studies of high-altitude adaptation have
been conducted, but few have focused on metabolism. In the present study, we
determined the differences in the serum metabolomics between yaks and the
closely related species of low-altitude yellow cattle and dairy cows. We
generated high-quality metabolite profiling data for 36 samples derived from the
three species, and a clear separation trend was obtained between yaks and the
other animals from principal component analysis. In addition, we identified a
total of 63 differentially expressed metabolites among the three species.
Functional analysis revealed that differentially expressed metabolites were
related to the innate immune activation, oxidative stress-related metabolism,
and energy metabolism in yaks, which indicates the important roles of
metabolites in high-altitude adaptation in yaks. The results provide new
insights into the mechanism of adaptation or acclimatization to high-altitude
environments in yaks and hypoxia-related diseases in humans.
Collapse
Affiliation(s)
- Meizhou Huang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
- Academician (Expert) Workstation of
Sichuan Province, The Affiliated Hospital of Southwest Medical
University, Sichuan 646000, China
| | - Xin Zhang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
| | - Wenjun Yan
- Agricultural and Rural Integrated Service
Center of Dachaigou Town, Tianzhu Tibetan Autonomous County,
Gansu 733202, China
| | - Jingjing Liu
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public
Health, Lanzhou University, Gansu 730000, China
- Corresponding author: Hui Wang, Department of
Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
Tel: +86-13919330832, E-mail:
| |
Collapse
|
18
|
Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, YangJi C, Chen XY, Jiang H, Zhong JC, Ji QM. Differences in proteomic profiles between yak and three cattle strains provide insights into molecular mechanisms underlying high-altitude adaptation. J Anim Physiol Anim Nutr (Berl) 2021; 106:485-493. [PMID: 34494310 DOI: 10.1111/jpn.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023]
Abstract
Yaks display unique properties of the lung and heart, enabling their adaptation to high-altitude environments, but the underlying molecular mechanisms are still largely unknown. In the present study, the proteome differences in lung and heart tissues were compared between yak (Bos grunniens) and three cattle strains (Bos taurus, Holstein, Sanjiang and Tibetan cattle) using the sequential window acquisition of all theoretical mass spectra/data-independent acquisition (SWATH/DIA) proteomic method. In total, 51,755 peptides and 7215 proteins were identified. In the lung tissue, there were 162, 310 and 118 differential abundance proteins (DAPs) in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. In the heart tissue, there were 71, 57 and 78 DAPs in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DAPs were enriched for the retinol metabolism and toll-like receptor categories in lung tissue. The changes in these two pathways may regulate hypoxia-induced factor and immune function in yaks. Moreover, DAPs in heart tissues were enriched for cardiac muscle contraction, Huntington's disease, chemical carcinogenesis and drug metabolism-cytochrome P450. Further exploration indicated that yaks may alter cardiac function through regulation of type 2 ryanodine receptor (RyR2) and Ca2+ -release channels. The present results are useful to further develop an understanding of the mechanisms underlying adaptation of animals to high-altitude conditions.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Cidan YangJi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
19
|
Adaptation Mechanisms of Yak ( Bos grunniens) to High-Altitude Environmental Stress. Animals (Basel) 2021; 11:ani11082344. [PMID: 34438801 PMCID: PMC8388626 DOI: 10.3390/ani11082344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Living at a high altitude involves many environmental challenges. The combined effects of hypoxia and cold stress impose severe physiological challenges on endothermic animals. The yak is integral to the livelihood of the people occupying the vast, inhospitable Qinghai-Tibetan plateau and the surrounding mountainous region. Due to long-term selection, the yak exhibits stable and unique genetic characteristics which enable physiological, biochemical, and morphological adaptations to a high altitude. Thus, the yak is a representative model for mammalian plateau-adaptability studies. Understanding coping mechanisms provides unique insights into adaptive evolution, thus informing the breeding of domestic yaks. This review provides an overview of genetic adaptations in Bos grunniens to high-altitude environmental stress. Combined genomics and theoretical advances have informed the genetic basis of high-altitude adaptations.
Collapse
|
20
|
Li J, Meng X, Wang L, Yu Y, Yu H, Wei Q. Changes in the expression levels of elastic fibres in yak lungs at different growth stages. BMC DEVELOPMENTAL BIOLOGY 2021; 21:9. [PMID: 33879064 PMCID: PMC8056501 DOI: 10.1186/s12861-021-00240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/09/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation. RESULTS Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks. CONCLUSIONS The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Xiangqiong Meng
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Lihan Wang
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Yang Yu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, 1 Weier Road, Xining, 810016, Qinghai, China
| | - Hongxian Yu
- Department of Veterinary Medicine, College of Agriculture and Animal Husbandry, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
| |
Collapse
|
21
|
Zimmerman SJ, Aldridge CL, Langin KM, Wann GT, Scott Cornman R, Oyler-McCance SJ. Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura). Heredity (Edinb) 2021; 126:117-131. [PMID: 32807852 PMCID: PMC7852610 DOI: 10.1038/s41437-020-0352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
The warming climate will expose alpine species adapted to a highly seasonal, harsh environment to novel environmental conditions. A species can shift their distribution, acclimate, or adapt in response to a new climate. Alpine species have little suitable habitat to shift their distribution, and the limits of acclimation will likely be tested by climate change in the long-term. Adaptive genetic variation may provide the raw material for species to adapt to this changing environment. Here, we use a genomic approach to describe adaptive divergence in an alpine-obligate species, the white-tailed ptarmigan (Lagopus leucura), a species distributed from Alaska to New Mexico, across an environmentally variable geographic range. Previous work has identified genetic structure and morphological, behavioral, and physiological differences across the species' range; however, those studies were unable to determine the degree to which adaptive divergence is correlated with local variation in environmental conditions. We used a genome-wide dataset generated from 95 white-tailed ptarmigan distributed throughout the species' range and genotype-environment association analyses to identify the genetic signature and environmental drivers of local adaptation. We detected associations between multiple environmental gradients and candidate adaptive loci, suggesting ptarmigan populations may be locally adapted to the plant community composition, elevation, local climate, and to the seasonality of the environment. Overall, our results suggest there may be groups within the species' range with genetic variation that could be essential for adapting to a changing climate and helpful in guiding conservation action.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA.
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| | - Kathryn M Langin
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| | - Gregory T Wann
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| | - R Scott Cornman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| |
Collapse
|
22
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
23
|
Xin JW, Chai ZX, Zhang CF, Yang YM, Zhang Q, Zhu Y, Cao HW, Yang Ji C, Zhong JC, Ji QM. Transcriptome analysis identified long non-coding RNAs involved in the adaption of yak to high-altitude environments. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200625. [PMID: 33047026 PMCID: PMC7540768 DOI: 10.1098/rsos.200625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
The mechanisms underlying yak adaptation to high-altitude environments have been investigated using various methods, but no report has focused on long non-coding RNA (lncRNA). In the present study, lncRNAs were screened from the gluteus transcriptomes of yak and their transcriptional levels were compared with those in Sanjiang cattle, Holstein cattle and Tibetan cattle. The potential target genes of the differentially expressed lncRNAs between species/strains were predicted using cis and trans models. Based on cis-regulated target genes, no KEGG pathway was significantly enriched. Based on trans-regulated target genes, 11 KEGG pathways in relation to energy metabolism and three KEGG pathways associated with muscle contraction were significantly enriched. Compared with cattle strains, transcriptional levels of acyl-CoA dehydrogenase, acyl-CoA-binding protein, 3-hydroxyacyl-CoA dehydrogenase were relatively higher and those of glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase 1, pyruvate kinase and lactate/malate dehydrogenase were relatively lower in yak, suggesting that yaks activated fatty acid oxidation but inhibited glucose oxidation and glycolysis. Besides, NADH dehydrogenase and ATP synthase showed lower transcriptional levels in yak than in cattle, which might protect muscle tissues from deterioration caused by reactive oxygen species (ROS). Compared with cattle strains, the higher transcriptional level of glyoxalase in yak might contribute to dicarbonyl stress resistance. Voltage-dependent calcium channel/calcium release channel showed a lower level in yak than in cattle strains, which could reduce the Ca2+ influx and subsequently decrease the risk of hypertension. However, levels of EF-hand and myosin were higher in yak than in cattle strains, which might enhance the negative effects of reduced Ca2+ on muscle contraction. Overall, the present study identified lncRNAs and proposed their potential regulatory functions in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Yu-Mei Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Cidan Yang Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, People's Republic of China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
- Author for correspondence: Qiu-Mei Ji e-mail:
| |
Collapse
|
24
|
Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, Ji CY, Chen XY, Jiang H, Zhong JC, Ji QM. Signature of high altitude adaptation in the gluteus proteome of the yak. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:362-372. [PMID: 32779369 DOI: 10.1002/jez.b.22995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
Yak is the unique Bovidae species in the Qinghai-Tibetan Plateau. A previous proteomic study has compared the yak muscle tissue to one cattle strain using the isobaric tags for relative and absolute quantification approach. In this study, to further investigate the molecular mechanisms underlying yak adaptation, the proteomic profiles of gluteus were compared between yak and one moderate-altitude cattle strain (Tibetan cattle) and two low-altitude cattle strains (Holstein and Sanjiang cattle) using a label-free quantitative method. The comparisons identified 20, 364, 143 upregulated proteins and 4, 6, 37 downregulated proteins in yak, compared with Tibetan, Holstein, and Sanjiang cattle, respectively. Protein-protein interaction analysis indicated that these differentially expressed proteins were mainly related to "oxidative phosphorylation" and "electron transport chain." Further analysis revealed that NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4, cytochrome C oxidase subunit 6A2, mitochondrial and cytochrome c oxidase subunit NDUFA4 were all increased in the yak, suggesting that yak might increase mitochondrial capacity to sustain metabolic rates under high altitude conditions, which might be a long-term adaptive mechanism underlying adaptation to high altitude environments. Yak increased the level of thioredoxin reductase 2 to protect themselves from oxidative damages. Moreover, the increased expression levels of phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform and caveolin-1 in yak suggested that yaks promoted glucose uptake for adaptation to high altitude. These results provided more information to better understand the molecular mechanisms underlying yak adaption.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, P. R. China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Cidan Yang Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, P. R. China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, P. R. China.,Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| |
Collapse
|
25
|
Liu Y, Jin X, Mei S, Xu H, Zhao C, Lan Q, Xie T, Fang Y, Li S, Zhu B. Insights into the genetic characteristics and population structures of Chinese two Tibetan groups using 35 insertion/deletion polymorphic loci. Mol Genet Genomics 2020; 295:957-968. [PMID: 32333170 DOI: 10.1007/s00438-020-01670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Studying the genetic structure of each ethnic group is helpful to clarify the genetic background and trace back to the ethnic origin. Tibetan people have lived in the Qinghai-Tibet Plateau (mean elevation over 4500 m) for generations, and have well adapted to the high-altitude environment. Due to the relatively closed geographical environment, Tibetans have preserved their representative physical characteristics and genetic information, thereby become an important research group in human genetics. In this study, genetic characteristics and population structures of two Tibetan groups (Qinghai Tibetans and Tibet Tibetans) were revealed by 35 insertion/deletion polymorphism (DIP) loci, aiming to provide valuable genetic information for population genetic differentiation analyses and forensic identifications. The combined discrimination power, cumulative exclusion probability and combined match probability of the 35 DIP loci in Qinghai Tibetan and Tibet Tibetan groups were 0.9999999999999945, 0.9988, 5.56623 × 10-15; and 0.9999999999999904, 0.9990, 9.69071 × 10-15, respectively, indicating that the panel possessed a strong capability for Tibetan personal identifications. Population differentiations and genetic relationship analyses among the two studied Tibetan groups and other 27 comparison populations were carried out using the Nei's DA genetic distances, population pairwise genetic distances F-statistics (FST), analysis of molecular variance (AMOVA), phylogenetic tree reconstruction, principal component analysis and STRUCTURE methods. Results demonstrated that the most intimate genetic relationships existed in these two Tibetan groups; and genetic similarities between two Tibetan groups and the populations from East Asia were much stronger than that between the Tibetan groups and other geographical populations. Furthermore, forensic ancestral informativeness assessments suggested that several loci could be regarded as ancestry informative markers inferring individual biogeographic origins as well as contributing to forensic anthropology and population genetic researches.
Collapse
Affiliation(s)
- Yanfang Liu
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shuyan Mei
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hui Xu
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Congying Zhao
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Lan
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tong Xie
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yating Fang
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuanglin Li
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bofeng Zhu
- Multi‑Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China. .,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
26
|
Wu X, Zhou X, Ding X, Chu M, Liang C, Pei J, Xiong L, Bao P, Guo X, Yan P. Reference gene selection and myosin heavy chain (MyHC) isoform expression in muscle tissues of domestic yak (Bos grunniens). PLoS One 2020; 15:e0228493. [PMID: 32027673 PMCID: PMC7004298 DOI: 10.1371/journal.pone.0228493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/16/2020] [Indexed: 01/04/2023] Open
Abstract
Domestic yak (Bos grunniens) is the most crucial livestock in the Qinghai-Tibetan Plateau, providing meat and other necessities for local people. The skeletal muscle of adult livestock is composed of muscle fibers, and fiber composition in muscle has influence on meat qualities, such as tenderness, pH, and color. Real-time quantitative polymerase chain reaction (RT-qPCR) is a powerful tool to evaluate the gene expression of muscle fiber, but the normalization of the data depends on the stability of expressed reference genes. Unfortunately, there is no consensus for an ideal reference gene for data normalization in muscle tissues of yak. In this study, we aimed to assess the stability of 14 commonly used candidate reference genes by using five algorithms (GeNorm, NormFinder, BestKeeper, Delat Ct and Refinder). Our results suggested UXT and PRL13A were the most stable reference genes, while the most commonly used reference gene, GAPDH, was most variably expressed across different muscle tissues. We also found that the extensor digitorum lateralis (EDL), trapezius pars thoracica (TPT), and psoas major (PM) muscle had the higher content of type I muscle fibers and the lowest content of type IIB muscle fibers, while gluteobiceps (GB) muscle had the highest content of type IIB muscle fibers. Our study provides the suitable reference genes for accurate analysis of yak muscle fiber composition.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuelan Zhou
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lin Xiong
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (PY); (XG)
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (PY); (XG)
| |
Collapse
|
27
|
Friedrich J, Wiener P. Selection signatures for high-altitude adaptation in ruminants. Anim Genet 2020; 51:157-165. [PMID: 31943284 DOI: 10.1111/age.12900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
High-altitude areas are important socio-economical habitats with ruminants serving as a major source of food and commodities for humans. Living at high altitude, however, is extremely challenging, predominantly due to the exposure to hypoxic conditions, but also because of cold temperatures and limited feed for livestock. To survive in high-altitude environments over the long term, ruminants have evolved adaptation strategies, e.g. physiological and morphological modifications, which allow them to cope with these harsh conditions. Identification of such selection signatures in ruminants may contribute to more informed breeding decisions, and thus improved productivity. Moreover, studying the genetic background of altitude adaptation in ruminants provides insights into a common molecular basis across species and thus a better understanding of the physiological basis of this adaptation. In this paper, we review the major effects of high altitude on the mammalian body and highlight some of the most important short-term (coping) and genetically evolved (adaptation) physiological modifications. We then discuss the genetic architecture of altitude adaptation and target genes that show evidence of being under selection based on recent studies in various species, with a focus on ruminants. The yak is presented as an interesting native species that has adapted to the high-altitude regions of Tibet. Finally, we conclude with implications and challenges of selection signature studies on altitude adaptation in general. We found that the number of studies on genetic mechanisms that enable altitude adaptation in ruminants is growing, with a strong focus on identifying selection signatures, and hypothesise that the investigation of genetic data from multiple species and regions will contribute greatly to the understanding of the genetic basis of altitude adaptation.
Collapse
Affiliation(s)
- J Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - P Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
28
|
Wu X, Zhou X, Ding X, Chu M, Liang C, Pei J, Xiong L, Bao P, Guo X, Yan P. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals (Basel) 2019; 9:ani9110943. [PMID: 31717620 PMCID: PMC6912359 DOI: 10.3390/ani9110943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Ashidan yak is a new cultivated breed which has polled characteristics and a mild temperament. Improving milk yield is an important aspect of a breeding program for this breed. The mammary gland undergoes dramatic physiological and metabolic changes during the transition from lactation to dry periods, which involves the expression and regulation of a great number of genes. Quantification of gene expression levels by real-time quantitative polymerase chain reaction (RT-qPCR) is important to reveal the molecular mechanisms of mammary gland development and lactation. The accuracy of RT-qPCR is strongly influenced by the expression stability of reference genes, however, a systematic approach for selecting reference genes used for analyzing gene expression of the Ashidan yak has not been developed. In this study, we selected reference genes and analyzed their expression stability at different physiological stages (lactation and dry period). We found the hydroxymethylbilane synthase gene (HMBS) and the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide gene (YWHAZ) were the most stable genes of the mammary gland of the Ashidan yak. These results help to improve the accuracy of gene expression analysis and provide a basis for future functional studies of target gene expression in the mammary gland of the Ashidan yak. Abstract Investigating the critical genes related to milk synthesis is essential for the improvement of the milk yield of the yak. Real-time quantitative polymerase chain reaction (RT-qPCR) is a reliable and widely used method to measure and evaluate gene expression levels. Selection of suitable reference genes is mandatory to acquire accurate normalization of gene expression results from RT-qPCR. To select the most stable reference genes for reliable normalization of mRNA expression by RT-qPCR in the mammary gland of the Ashidan yak, we selected 16 candidate reference genes and analyzed their expression stability at different physiological stages (lactation and dry period). The expression stability of the candidate reference genes was assessed using geNorm, NormFinder, BestKeeper, Delta Ct, and RefFinder methods. The results showed that the hydroxymethylbilane synthase gene (HMBS) and the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide gene (YWHAZ) were the most stable genes across all treatment samples. The reliability of selected reference genes was validated by normalizing relative expression of the lactation-related 60S ribosomal protein L35 gene (RPL35). The relative expression of RPL35 varied considerably according to the different reference genes. This work provides valuable information to further promote research in the molecular mechanisms involved in lactation and mammary gland development and provides a foundation for the improvement of the milk yield and quality of the Ashidan yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Correspondence: (X.G.); (P.Y.); Tel.: +86-0931-2115257 (X.G.); +86-0931-2115288 (P.Y.)
| | - Ping Yan
- Correspondence: (X.G.); (P.Y.); Tel.: +86-0931-2115257 (X.G.); +86-0931-2115288 (P.Y.)
| |
Collapse
|
29
|
Comparisons of lung and gluteus transcriptome profiles between yaks at different ages. Sci Rep 2019; 9:14213. [PMID: 31578356 PMCID: PMC6775228 DOI: 10.1038/s41598-019-50618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 09/09/2019] [Indexed: 11/08/2022] Open
Abstract
The yak, Bos grunniens, is the only large mammal in the Qinghai-Tibet Plateau and has been bred to provide meat, milk, and transportation. Previous studies indicate that the immune system contributes to the yak's adaptation to high-altitude environments. In order to further investigate changes in immune function during yak development, we compared the transcriptome profiles of gluteus and lung tissues among yaks at 6, 30, 60, and 90 months of age. Analyses of significantly differentially expressed genes (DEGs) in lung tissues revealed that immune function was more activated at 6-months and less activated at 90-months than in the 30 and 60-month-old animals. DEG exploration in gluteal tissues revealed that immune functions were more highly activated at both 6 and 90-months, compared with 30 and 60-months. Immune system activation in the muscle and lung tissues of 30-month-old yaks may increase their resistance to infections, while decreased may be due to aging. Furthermore, the higher immune activation status in the gluteal tissues in 90-month-old yaks could be due to muscle injury and subsequent regeneration, which is supported by the fact that 5 unigenes related with muscle injury and 3 related to muscle regeneration displayed greater expression levels at 90-months than at 30 and 60-months. Overall, the present study highlights the important role of the immune system in yak development, which will facilitate future investigations.
Collapse
|