Fast and accurate sCMOS noise correction for fluorescence microscopy.
Nat Commun 2020;
11:94. [PMID:
31901080 PMCID:
PMC6941997 DOI:
10.1038/s41467-019-13841-8]
[Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and different responsivity at each pixel induces extra readout and pattern noise compared to charge-coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals, thereby compromising strategies to reduce photo-damage to live samples. Here, we propose a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN) for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the fine details of the signal. The method improves the camera performance, enabling fast, low-light and quantitative optical microscopy with video-rate denoising for a broad range of imaging conditions and modalities.
Scientific complementary metal-oxide semiconductor (sCMOS) cameras have advanced the imaging field, but they often suffer from additional noise compared to CCD sensors. Here the authors present a content-adaptive algorithm for the automatic correction of sCMOS-related noise for fluorescence microscopy.
Collapse