1
|
Origin of iodine preferential attack at sulfur in phosphorothioate and subsequent P-O or P-S bond dissociation. Proc Natl Acad Sci U S A 2022; 119:e2119032119. [PMID: 35439051 PMCID: PMC9169930 DOI: 10.1073/pnas.2119032119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Iodine-induced cleavage at phosphorothioate DNA (PT-DNA) is characterized by extremely high sensitivity (∼1 phosphorothioate link per 106 nucleotides), which has been used for detecting and sequencing PT-DNA in bacteria. Despite its foreseeable potential for wide applications, the cleavage mechanism at the PT-modified site has not been well established, and it remains unknown as to whether or not cleavage of the bridging P-O occurs at every PT-modified site. In this work, we conducted accurate ωB97X-D calculations and high-performance liquid chromatography-mass spectrometry to investigate the process of PT-DNA cleavage at the atomic and molecular levels. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-iodo-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphotriester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.
Collapse
|
2
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
3
|
Hu Z, Yang J, Xu F, Sun G, Pan X, Xia M, Zhang S, Zhang X. Site-Specific Scissors Based on Myeloperoxidase for Phosphorothioate DNA. J Am Chem Soc 2021; 143:12361-12368. [PMID: 34324318 DOI: 10.1021/jacs.1c06370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tool box of site-specific cleavage for nucleic acid has been an increasingly attractive subject. Especially, the recent emergence of the orthogonally activatable DNA device is closely related to the site-specific scission. However, most of these cleavage strategies are based on exogenous assistance, such as laser irradiation. Endogenous strategies are highly desirable for the orthogonally regulatable DNA machine to explore the crucial intracellular biological process and cell signal network. Here, we found that the accurate site-specific cleavage reaction of phosphorothioate (PT) modified DNA by using myeloperoxidase (MPO). A scissors-like mechanism by which MPO breaks PT modification through chloride oxidation has been revealed. Furthermore, we have successfully applied the scissors to activate PT-modified hairpin-DNA machines to produce horseradish peroxidase (HRP)-mimicking DNAzyme or initiate hybridization chain reaction (HCR) amplification. Since MPO plays an important role in the pathway related to oxidative stress in cells, through the HCR amplification activated by this tool box, the oxidative stress in living cells has been robustly imaged. This work proposes an accurate and endogenous site-specific cleavage tool for the research of biostimuli and the construction of DNA molecular devices.
Collapse
Affiliation(s)
- Zhian Hu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jinlei Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fujian Xu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Gongwei Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xingyu Pan
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengchan Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Zhu S, Zheng T, Kong L, Li J, Cao B, DeMott MS, Sun Y, Chen Y, Deng Z, Dedon PC, You D. Development of Methods Derived from Iodine-Induced Specific Cleavage for Identification and Quantitation of DNA Phosphorothioate Modifications. Biomolecules 2020; 10:biom10111491. [PMID: 33126637 PMCID: PMC7692671 DOI: 10.3390/biom10111491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
DNA phosphorothioate (PT) modification is a novel modification that occurs on the DNA backbone, which refers to a non-bridging phosphate oxygen replaced by sulfur. This exclusive DNA modification widely distributes in bacteria but has not been found in eukaryotes to date. PT modification renders DNA nuclease tolerance and serves as a constitute element of bacterial restriction-modification (R-M) defensive system and more biological functions are awaiting exploration. Identification and quantification of the bacterial PT modifications are thus critical to better understanding their biological functions. This work describes three detailed methods derived from iodine-induced specific cleavage-an iodine-induced cleavage assay (ICA), a deep sequencing of iodine-induced cleavage at PT site (ICDS) and an iodine-induced cleavage PT sequencing (PT-IC-Seq)-for the investigation of PT modifications. Using these approaches, we have identified the presence of PT modifications and quantized the frequency of PT modifications in bacteria. These characterizations contributed to the high-resolution genomic mapping of PT modifications, in which the distribution of PT modification sites on the genome was marked accurately and the frequency of the specific modified sites was reliably obtained. Here, we provide time-saving and less labor-consuming methods for both of qualitative and quantitative analysis of genomic PT modifications. The application of these methodologies will offer great potential for better understanding the biology of the PT modifications and open the door to future further systematical study.
Collapse
Affiliation(s)
- Sucheng Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Tao Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Jinli Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Bo Cao
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China;
| | - Michael S. DeMott
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.S.D.); (P.C.D.)
| | - Yihua Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Ying Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.S.D.); (P.C.D.)
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; (S.Z.); (T.Z.); (L.K.); (J.L.); (Y.S.); (Y.C.); (Z.D.)
- Correspondence: ; Tel.: +86-21-62933765
| |
Collapse
|