1
|
Chugan GS, Lyundup AV, Bondarenko ON, Galstyan GR. [The application of cell products for the treatment of critical limb ischemia in patients with diabetes mellitus: a review of the literature]. PROBLEMY ENDOKRINOLOGII 2024; 70:4-14. [PMID: 39302860 DOI: 10.14341/probl13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
The number of patients with diabetes mellitus (DM) has been progressively increasing worldwide over the past decades, and many international organizations consider DM as a public health emergency of the 21st century.Critical limb ischemia (CLI) is the most severe stage of peripheral arterial disease (PAD) in DM and is characterized by a high risk of limb loss without revascularization. Traditional treatment tactics include open and endovascular revascularization surgical techniques. However, in patients not eligible for revascularization and in cases where performed surgical treatment performed has been ineffective, there are almost no therapeutic alternatives, often leading to amputations and death. As of today, one of the newest non-surgical treatment options is cell therapy. Among different cells, mesenchymal stromal cells (MSCs) are potentially one of the most prospective for use in this patient population.This article provides an overview of clinical trials using cell therapy in patients with CLI.To analyze publications, electronic databases PubMed, SCOPUS, ClinicalTrials, and ScienceDirect were searched to identify published data from clinical trials, research studies, and review articles on cell therapy for critical lower extremity ischemia. After the search, 489 results were received.As a result of systematic selection, 22 clinical trials were analyzed.According to the analyzed literature data, the use of cell products in this category of patients is effective and safe. Cell therapy can stimulate the formation of new vessels and enhances collateral circulation; it is also reported improved distal perfusion, increased pain-free walking distance, decreased amputation rates, and increased survival rates.Nevertheless, further study of the potential use of this category of drugs is needed.
Collapse
Affiliation(s)
| | - A V Lyundup
- Endocrinology Research Centre; Research and Educational Resource Center for Cellular Technologies, Peoples' Friendship University of Russia (RUDN University)
| | | | | |
Collapse
|
2
|
van Rhijn-Brouwer FCCC, Wever KE, Kiffen R, van Rhijn JR, Gremmels H, Fledderus JO, Vernooij RWM, Verhaar MC. Systematic review and meta-analysis of the effect of bone marrow-derived cell therapies on hind limb perfusion. Dis Model Mech 2024; 17:dmm050632. [PMID: 38616715 PMCID: PMC11139036 DOI: 10.1242/dmm.050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Preclinical and clinical studies on the administration of bone marrow-derived cells to restore perfusion show conflicting results. We conducted a systematic review and meta-analysis on preclinical studies to assess the efficacy of bone marrow-derived cells in the hind limb ischemia model and identify possible determinants of therapeutic efficacy. In vivo animal studies were identified using a systematic search in PubMed and EMBASE on 10 January 2022. 85 studies were included for systematic review and meta-analysis. Study characteristics and outcome data on relative perfusion were extracted. The pooled mean difference was estimated using a random effects model. Risk of bias was assessed for all included studies. We found a significant increase in perfusion in the affected limb after administration of bone marrow-derived cells compared to that in the control groups. However, there was a high heterogeneity between studies, which could not be explained. There was a high degree of incomplete reporting across studies. We therefore conclude that the current quality of preclinical research is insufficient (low certainty level as per GRADE assessment) to identify specific factors that might improve human clinical trials.
Collapse
Affiliation(s)
| | - Kimberley Elaine Wever
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Romy Kiffen
- Department of Anaesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jon-Ruben van Rhijn
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences Utrecht, 3584 CS Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joost Ougust Fledderus
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robin Wilhelmus Maria Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Marianne Christina Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Peeters JAHM, Peters HAB, Videler AJ, Hamming JF, Schepers A, Quax PHA. Exploring the Effects of Human Bone Marrow-Derived Mononuclear Cells on Angiogenesis In Vitro. Int J Mol Sci 2023; 24:13822. [PMID: 37762125 PMCID: PMC10531254 DOI: 10.3390/ijms241813822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cell therapies involving the administration of bone marrow-derived mononuclear cells (BM-MNCs) for patients with chronic limb-threatening ischemia (CLTI) have shown promise; however, their overall effectiveness lacks evidence, and the exact mechanism of action remains unclear. In this study, we examined the angiogenic effects of well-controlled human bone marrow cell isolates on endothelial cells. The responses of endothelial cell proliferation, migration, tube formation, and aortic ring sprouting were analyzed in vitro, considering both the direct and paracrine effects of BM cell isolates. Furthermore, we conducted these investigations under both normoxic and hypoxic conditions to simulate the ischemic environment. Interestingly, no significant effect on the angiogenic response of human umbilical vein endothelial cells (HUVECs) following treatment with BM-MNCs was observed. This study fails to provide significant evidence for angiogenic effects from human bone marrow cell isolates on human endothelial cells. These in vitro experiments suggest that the potential benefits of BM-MNC therapy for CLTI patients may not involve endothelial cell angiogenesis.
Collapse
Affiliation(s)
- Judith A. H. M. Peeters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hendrika A. B. Peters
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anique J. Videler
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jaap F. Hamming
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.A.H.M.P.); (H.A.B.P.); (A.J.V.); (J.F.H.); (A.S.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
4
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int 2022; 2022:6795274. [PMID: 35355589 PMCID: PMC8958070 DOI: 10.1155/2022/6795274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia preconditioning enhances the paracrine abilities of mesenchymal stem cells (MSCs) for vascular regeneration and tissue healing. Implantation of hypoxia-induced mesenchymal stem cells (hi-MSCs) may further improve limb perfusion in a murine model of hindlimb ischemia. This study is aimed at determining whether implantation of hi-MSCs is an effective modality for improving outcomes of treatment of ischemic artery diseases. We evaluated the effects of human bone marrow-derived MSC implantation on limb blood flow in an ischemic hindlimb model. hi-MSCs were prepared by cell culture under 1% oxygen for 24 hours prior to implantation. A total of 1 × 105 MSCs and hi-MSCs and phosphate-buffered saline (PBS) were intramuscularly implanted into ischemic muscles at 36 hours after surgery. Restoration of blood flow and muscle perfusion was evaluated by laser Doppler perfusion imaging. Blood perfusion recovery, enhanced vessel densities, and improvement of function of the ischemia limb were significantly greater in the hi-MSC group than in the MSC or PBS group. Immunochemistry revealed that hi-MSCs had higher expression levels of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor A than those in MSCs. In addition, an endothelial cell-inducing medium showed high expression levels of vascular endothelial growth factor, platelet endothelial cell adhesion molecule-1, and von Willebrand factor in hi-MSCs compared to those in MSCs. These findings suggest that pretreatment of MSCs with a hypoxia condition and implantation of hi-MSCs advances neovascularization capability with enhanced therapeutic angiogenic effects in a murine hindlimb ischemia model.
Collapse
|
6
|
Mohamad Yusoff F, Kajikawa M, Yamaji T, Takaeko Y, Hashimoto Y, Mizobuchi A, Han Y, Kishimoto S, Maruhashi T, Nakashima A, Higashi Y. Low-intensity pulsed ultrasound decreases major amputation in patients with critical limb ischemia: 5-year follow-up study. PLoS One 2021; 16:e0256504. [PMID: 34411183 PMCID: PMC8376014 DOI: 10.1371/journal.pone.0256504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Various therapeutic strategies for angiogenesis are performed to improve symptoms in patients with critical limb ischemia (CLI). Pre-clinical studies have shown that low-intensity pulsed ultrasound (LIPUS) exposure induces angiogenesis. LIPUS may be a new stratergy for treatment of CLI. The purpose of this pilot trial was to evaluate outcomes in patients with CLI who were treated with LIPUS. Fourteen patients with CLI, who were not candidates for angioplasty or surgical revascularization, were enrolled in this study. Historical control data were obtained from the Hiroshima University PAD database. The primary endpoints were major amputation and death. The outcomes were compared in 16 lower limbs of the 14 patients with CLI who were treated with LIPUS and in 14 lower limbs of 14 patients with CLI as historical controls. All patients were followed for after 5 years after treatment with LIPUS. The mean duration of LIPUS exposure in the LIPUS group was 381± 283 days. During the 5-year follow-up periods, there were 3 major amputations and 7 deaths in the LIPUS group and there were 14 major amputations and 7 deaths in the historical control group. The overall amputation-free survival rate was significantly higher in patients who were treated with LIPUS than in historical controls. There was no significant difference between overall mortality-free survival rates in the LIPUS group and historical control group. LIPUS is a noninvasive option for therapeutic angiogenesis with the potential to reduce the incidence of major amputations in patients with CLI.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yu Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Aya Mizobuchi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yiming Han
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
7
|
Verwer MC, Wijnand JGJ, Teraa M, Verhaar MC, de Borst GJ. Long Term Survival and Limb Salvage in Patients With Non-Revascularisable Chronic Limb Threatening Ischaemia. Eur J Vasc Endovasc Surg 2021; 62:225-232. [PMID: 34090781 DOI: 10.1016/j.ejvs.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to provide long term survival and limb salvage rates for patients with non-revascularisable (NR) chronic limb threatening ischaemia (CLTI). METHODS This was a retrospective review of prospectively collected data, derived from a randomised controlled trial (JUVENTAS) investigating the use of a regenerative cell therapy. Survival and limb salvage of the index limb in CLTI patients without viable options for revascularisation at inclusion were analysed retrospectively. The primary outcome was amputation free survival, a composite of survival and limb salvage, at five years after inclusion in the original trial. RESULTS In 150 patients with NR-CLTI, amputation free survival was 43% five years after inclusion. This outcome was driven by an equal rate of all cause mortality (35%) and amputation (33%). Amputation occurred predominantly in the first year. Furthermore, 33% of those with amputation subsequently died within the investigated period, with a median interval of 291 days. CONCLUSION Five years after the initial need for revascularisation, about half of the CLTI patients who were deemed non-revascularisable survived with salvage of the index limb. Although the prospects for these high risk patients are still poor, under optimal medical care, amputation free survival seems comparable with that of revascularisable CLTI patients, while the major amputation rate within one year, especially among NR-CLTI patients with ischaemic tissue loss, is very high.
Collapse
Affiliation(s)
- Maarten C Verwer
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep G J Wijnand
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Teraa
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology & Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Higashi Y, Yusoff FM, Kishimoto S, Maruhashi T. Regenerative medicine for radiation emergencies. JOURNAL OF RADIATION RESEARCH 2021; 62:i21-i29. [PMID: 33978185 PMCID: PMC8114226 DOI: 10.1093/jrr/rraa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Hiroshima University is a 'medical institution for tertiary radiation emergencies' and a 'medical support organization as a part of the International Atomic Emergency Agency Emergency Preparedness Response-Response and Assistance Network (IAEA EPR-RANET)'. To establish a system of regenerative medicine for radiation emergencies with treatment by implantation of various types of cells derived from induced pluripotent stem (iPS) cells, it is necessary to establish methods of defense against and treatment for radiation-induced damage from nuclear power plant accidents and nuclear terrorism. It is also necessary to develop cell therapy, cellular repair technology and regenerative biotechnology as regenerative medicine for radiation emergencies. Such applications have not been established yet. To develop a regenerative medical system, by using the existing one, for radiation emergencies, we will attempt to manage the cell-processing center to establish a safe and secured iPS cell bank for radiation medicine. By using this iPS cell bank as the central leverage, we will develop an education program for radiation emergency medicine and construct a network of regenerative medicine for radiation emergency medicine.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Japan
- Corresponding author. Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Tel: +81-82-257-5831; Fax: +81-82-257-5831;
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| |
Collapse
|
9
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
10
|
Rojas-Torres M, Jiménez-Palomares M, Martín-Ramírez J, Beltrán-Camacho L, Sánchez-Gomar I, Eslava-Alcon S, Rosal-Vela A, Gavaldá S, Durán-Ruiz MC. REX-001, a BM-MNC Enriched Solution, Induces Revascularization of Ischemic Tissues in a Murine Model of Chronic Limb-Threatening Ischemia. Front Cell Dev Biol 2020; 8:602837. [PMID: 33363160 PMCID: PMC7755609 DOI: 10.3389/fcell.2020.602837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy. Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery, REX-001 and placebo were administrated intramuscularly to Balb-c nude mice (n:51) and follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis) was carried out for 21 days. The number of vessels and vascular diameter sizes were measured within the ischemic tissues to evaluate neovascularization and arteriogenesis. Finally, several cell-tracking assays were performed to evaluate potential biodistribution of these cells. Results: REX-001 induced a significant recovery of blood flow by increasing vascular density within the ischemic limbs, with no cell translocation to other organs. Moreover, cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks post-injection despite on-going revascularization, suggesting a paracrine mechanism of action. Conclusion: Overall, our data supported the role of REX-001 product to improve revascularization and ischemic reperfusion in CLTI.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | | | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sandra Gavaldá
- R&D Department at Rexgenero Biosciences Sociedad Limitada (SL), Seville, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
11
|
Yusoff FM, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Nakashima A, Wahid SFSA, Higashi Y. Relationship between cell number and clinical outcomes of autologous bone-marrow mononuclear cell implantation in critical limb ischemia. Sci Rep 2020; 10:19891. [PMID: 33199760 PMCID: PMC7669841 DOI: 10.1038/s41598-020-76886-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Cell therapy using intramuscular injections of autologous bone-marrow mononuclear cells (BM-MNCs) improves clinical symptoms and can prevent limb amputation in atherosclerotic peripheral arterial disease (PAD) patients with critical limb ischemia (CLI). The purpose of this study was to evaluate the effects of the number of implanted BM-MNCs on clinical outcomes in atherosclerotic PAD patients with CLI who underwent cell therapy. This study was a retrospective observational study with median follow-up period of 13.5 years (range, 6.8–15.5 years) from BM-MNC implantation procedure. The mean number of implanted cells was 1.2 ± 0.7 × 109 per limb. There was no significant difference in number of BM-MNCs implanted between the no major amputation group and major amputation group (1.1 ± 0.7 × 109 vs. 1.5 ± 0.8 × 109 per limb, P = 0.138). There was also no significant difference in number of BM-MNCs implanted between the no death group and death group (1.5 ± 0.9 × 109 vs. 1.8 ± 0.8 × 109 per patient, P = 0.404). Differences in the number of BM-MNCs (mean number, 1.2 ± 0.7 × 109 per limb) for cell therapy did not alter the major amputation-free survival rate or mortality rate in atherosclerotic PAD patients with CLI. A large number of BM-MNCs will not improve limb salvage outcome or mortality.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - S Fadilah S Abdul Wahid
- Pusat Terapi Sel (Cell Therapy Centre), Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
12
|
Mohamad Yusoff F, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Kihara Y, Nakashima A, Higashi Y. Long-Term Clinical Outcomes of Autologous Bone Marrow Mononuclear Cell Implantation in Patients With Severe Thromboangiitis Obliterans. Circ J 2020; 84:650-655. [PMID: 32132348 DOI: 10.1253/circj.cj-19-1041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with severe Buerger disease, also known as thromboangiitis obliterans (TAO), are at risk of major limb amputation. It has been shown that autologous bone marrow mononuclear cell (BM-MNC) implantation improves the condition of critical limb ischemia in TAO patients. This study was conducted to further clarify the long-term (>10 years) results of autologous BM-MNC implantation in patients with TAO. METHODS AND RESULTS An observational study was conducted of the long-term results of BM-MNC implantation in 47 lower limbs of 27 patients with TAO. The mean (±SD) follow-up period was 12.0±8.6 years. There was no major amputation event up to 10 years of follow-up in patients treated with BM-MNC implantation. The overall amputation-free survival rates were significantly higher in patients who underwent BM-MNC implantation than in internal controls and historical controls. There was no significant difference in amputation-free survival rates between the historical and internal controls. There was also no significant difference in overall survival between patients who underwent BM-MNC implantation and the historical controls. CONCLUSIONS BM-MNC transplantation successfully prevented major limb amputation over a period of >10 years in patients with severe TAO who had no other therapeutic options.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| |
Collapse
|