1
|
Jaiswal S, Nyquist SK, Boyce S, Jivanjee T, Ibrahim S, Bromley JD, Gatter GJ, Gideon H, Patel K, Ganchua SK, Berger B, Fortune SM, Flynn JL, Shalek AK, Behar SM. Identification and characterization of the T cell receptor (TCR) repertoire of the cynomolgus macaque (Macaca Fascicularis). BMC Genomics 2022; 23:647. [PMID: 36096729 PMCID: PMC9465142 DOI: 10.1186/s12864-022-08867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.
Collapse
Affiliation(s)
- Swati Jaiswal
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Sarah K. Nyquist
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Tasneem Jivanjee
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Samira Ibrahim
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Joshua D. Bromley
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - G. James Gatter
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Hannah Gideon
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Kush Patel
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sharie Keanne Ganchua
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Bonnie Berger
- grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Sarah M. Fortune
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA
| | - JoAnne L. Flynn
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
2
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|