1
|
Zheng L, Liu Y, Li R, Yang Y, Jiang Y. Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis) raciborskii: Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1984. [PMID: 36767351 PMCID: PMC9915880 DOI: 10.3390/ijerph20031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii. However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii. Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yiming Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins (Basel) 2022; 14:toxins14050294. [PMID: 35622541 PMCID: PMC9145623 DOI: 10.3390/toxins14050294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Invasive nostocalean cyanobacteria (INC) were first reported in tropical regions and are now globally spreading rapidly due to climate change, appearing in temperate regions. INC require continuous monitoring for water resource management because of their high toxin production potential. However, it is difficult to analyze INC under a microscope because of their morphological similarity to nostocalean cyanobacteria such as the genus Aphanizomenon. This study calculates the gene copy number per cell for each target gene through quantitative gene analysis on the basis of genus-specific primers of genera Cylindrospermopsis, Sphaerospermopsis, and Cuspidothrix, and the toxin primers of anatoxin-a, saxitoxin, and cylindrospermopsin. In addition, quantitative gene analysis was performed at eight sites in the Nakdong River to assess the appearance of INC and their toxin production potential. Genera Cylindrospermopsis and Sphaerospermopsis did not exceed 100 cells mL−1 at the maximum, with a low likelihood of related toxin occurrence. The genus Cuspidothrix showed the highest cell density (1759 cells mL−1) among the INC. Nakdong River has potential for the occurrence of anatoxin-a through biosynthesis by genus Cuspidothrix because the appearance of this genus coincided with that of the anatoxin-a synthesis gene (anaF) and the detection of the toxin by ELISA.
Collapse
|
4
|
Meriggi C, Drakare S, Polaina Lacambra E, Johnson RK, Laugen AT. Species distribution models as a tool for early detection of the invasive Raphidiopsis raciborskii in European lakes. HARMFUL ALGAE 2022; 113:102202. [PMID: 35287933 DOI: 10.1016/j.hal.2022.102202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In freshwater habitats, invasive species and the increase of cyanobacterial blooms have been identified as a major cause of biodiversity loss. The invasive cyanobacteria Raphidiopsis raciborskii a toxin-producing and bloom-forming species affecting local biodiversity and ecosystem services is currently expanding its range across Europe. We used species distribution models (SDMs) and regional bioclimatic environmental variables, such as temperature and precipitation, to identify suitable areas for the colonization and survival of R. raciborskii, with special focus on the geographic extent of potential habitats in Northern Europe. SDMs predictions uncovered areas of high occurrence probability of R. raciborskii in locations where it has not been recorded yet, e.g. some areas in Central and Northern Europe. In the southeastern part of Sweden, areas of suitable climate for R. raciborskii corresponded with lakes of high concentrations of total phosphorus, increasing the risk of the species to thrive. To our knowledge, this is the first attempt to predict areas at high risk of R. raciborskii colonization in Europe. The results from this study suggest several areas across Europe that would need monitoring programs to determine if the species is present or not, to be able to prevent its potential colonization and population growth. Regarding an undesirable microorganism like R. raciborskii, authorities may need to start information campaigns to avoid or minimize the spread.
Collapse
Affiliation(s)
- Carlotta Meriggi
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Bioeconomy Research Team, Novia University of Applied Science, Ekenäs, Finland; Current address: Centre for Coastal Research, Department of Natural Sciences, Agder University, Kristiansand, Norway
| |
Collapse
|
5
|
Kim YJ, Park HK, Kim IS. Invasion and toxin production by exotic nostocalean cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong River, Korea. HARMFUL ALGAE 2020; 100:101954. [PMID: 33298363 DOI: 10.1016/j.hal.2020.101954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The extent and frequency of harmful cyanobacterial blooms are increasing, owing to the climate change caused by global warming, and some harmful filamentous cyanobacteria that were first reported in the tropics are spreading to temperate regions, such as North America, Europe, and Northeast Asia. Although these exotic invasive cyanobacteria have a high toxigenic potential, they are not targeted in management plans in many countries. This study analyzed the occurrence of and potential toxin and off-flavor secondary metabolite production by invasive nostocalean cyanobacteria in the Nakdong River in Korea, which is a temperate region. The occurrence of four species belonging to three genera of cyanobacteria was confirmed in the Nakdong River. The quantities of cyanobacteria in the Nakdong River were mostly low, fewer than 1,000 cells mL-1. Twenty-four strains belonging to four species in three genera of cyanobacteria were isolated from the Nakdong River. Analysis revealed no off-flavor secondary metabolite production by any of the isolates, and those belonging to Cylindrospermopsis raciborskii, Sphaerospermopsis aphanizomenoides, and S. reniformis were identified as nontoxic strains. However, anatoxin-a production was observed in two of the eleven isolates of Cuspidothrix issatschenkoi. Given the sites and the timing of its occurrence, C. issatschenkoi had the highest potential for toxin production among the invasive nostocalean cyanobacteria appearing in the Nakdong River.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| | - Hae-Kyung Park
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea.
| | - In-Soo Kim
- Nakdong River Environment Research Center, National Institute of Environmental Research, Dalseong-gun, Daegu, Korea
| |
Collapse
|