1
|
Wang W, Jiang Q, Tao J, Zhang Z, Liu G, Qiu B, Hu Q, Zhang Y, Xie C, Song J, Jiang G, Zhong H, Zou Y, Li J, Lv S. A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies. Comput Biol Chem 2025; 114:108290. [PMID: 39586226 DOI: 10.1016/j.compbiolchem.2024.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Peptidyl-prolyl cis/trans isomerase Pin1 occupies a prominent role in preventing the development of certain malignant tumors. Pin1 is considered a target for the treatment of related malignant tumors, so the identification of novel Pin1 inhibitors is particularly urgent. In this study, we preliminarily predicted eight candidates from FDA-approved drug database as the potential Pin1 inhibitors through virtual screening combined with empirical screening. Therefore, we selected these eight candidates and tested their binding affinity and inhibitory activity against Pin1 using fluorescence titration and PPIase activity assays, respectively. Subsequently, we found that four FDA-approved drugs showed good binding affinities and inhibition effects. In addition, we also observed that bexarotene can reduce cell viability in a dose-dependent and time-dependent manner and induce apoptosis. Finally, we inferred that residues K63, R68 and R69 are important in the binding process between bexarotene and Pin1. All in all, repurposing of FDA-approved drugs to inhibit Pin1 may provide a promising insight into the identification and development of new treatments for certain malignant tumors.
Collapse
Affiliation(s)
- Wang Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, PR China; Key Laboratory of Pharmacodynamics and Quality Evaluation on ant-inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, PR China
| | - Qizhou Jiang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiaxin Tao
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Zhenxian Zhang
- School of Laboratory Medicine, Nanchang Medical College, Nanchang 330006, PR China
| | - GuoPing Liu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Binxuan Qiu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Qingyang Hu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Yuxi Zhang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Chao Xie
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiawen Song
- School of Laboratory Medicine, Nanchang Medical College, Nanchang 330006, PR China
| | - GuoZhen Jiang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Hui Zhong
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Yanling Zou
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiaqi Li
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Shaoli Lv
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
3
|
He L, Liu Y, Xu J, Li J, Cheng G, Cai J, Dang J, Yu M, Wang W, Duan W, Liu K. Inhibitory Effects of Myriocin on Non-Enzymatic Glycation of Bovine Serum Albumin. Molecules 2022; 27:molecules27206995. [PMID: 36296589 PMCID: PMC9607541 DOI: 10.3390/molecules27206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation of proteins, which are involved in diabetic-related complications. To investigate the potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA) and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex (approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a potential anti-glycation agent and provide a theoretical basis for the further functional research of Myr in the prevention and treatment of AGEs-related diseases.
Collapse
Affiliation(s)
- Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Junling Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weiyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
4
|
Wang W, Zhang Q, Xiong X, Zheng Y, Yang W, Du L. Investigation on the influence of galloyl moiety to the peptidyl prolyl cis/trans isomerase Pin1: A spectral and computational analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Zhang Q, Sang F, Qian J, Lyu S, Wang W, Wang Y, Li Q, Du L. Identification of novel potential PI3Kα inhibitors for cancer therapy. J Biomol Struct Dyn 2020; 39:3721-3732. [DOI: 10.1080/07391102.2020.1771421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Feng Sang
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieyu Qian
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - ShaoLi Lyu
- Department of Ecology and Resource Engineering, Hetao College, Bayannur, Inner Mongolia, PR of China
| | - Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Wang
- The Department of Anesthesiology, the First Affiliated of Henan University, Kaifeng, China
| | - Qiang Li
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - LinFang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Probing conformational transitions of PIN1 from L. major during chemical and thermal denaturation. Int J Biol Macromol 2020; 154:904-915. [PMID: 32209371 DOI: 10.1016/j.ijbiomac.2020.03.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
Abstract
PIN1 proteins are a class of peptidyl prolyl cis-trans isomerases (PPIases), which have been implicated in numerous cellular functions like cell cycle progression, transcriptional control, signal transduction, promotion of oncogenesis and host-parasite interactions. In this work, the unfolding mechanism of a single domain PIN1 from Leishmania major (LmPIN1) has been characterized during thermal and denaturant-induced unfolding by differential scanning calorimetry (DSC), fluorescence and circular dichroism. Further, MD simulations have been performed to structurally probe the possible stages of its unfolding process. Both the fluorescence and CD data confirm classical two-state unfolding transitions for urea and GdnHCl. The thermal unfolding of LmPIN1, characterized by DSC, could optimally be fitted to a non two-state transition curve exhibiting two Tm's (53 °C and 57 °C) suggesting the possibility of an intermediate. Thermal unfolding of the modeled LmPIN1 by MD simulation shows that the unfolding process is initiated by increased fluctuations (dynamics) spanning residues 70-80, followed by perturbations in the sheet system and disjuncture of helix-sheet packing. Importantly, simulation and fluorescence quenching studies clearly suggest the possibility of the presence of residual structures of LmPIN1 even after complete denaturation.
Collapse
|