1
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
2
|
Zalar M, Golovanov AP. New Disulphide Bond in Cystatin-Based Protein Scaffold Prevents Domain-Swap-Mediated Oligomerization and Stabilizes the Functionally Active Form. ACS OMEGA 2019; 4:18248-18256. [PMID: 31720525 PMCID: PMC6844092 DOI: 10.1021/acsomega.9b02269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/18/2019] [Indexed: 05/13/2023]
Abstract
Peptide aptamers built using engineered scaffolds are a valuable alternative to monoclonal antibodies in many research applications because of their smaller size, versatility, specificity for chosen targets, and ease of production. However, inserting peptides needed for target binding may affect the aptamer structure, in turn compromising its activity. We have shown previously that a stefin A-based protein scaffold with AU1 and Myc peptide insertions (SQT-1C) spontaneously forms dimers and tetramers and that inserted loops mediate this process. In the present study, we show that SQT-1C forms tetramers by self-association of dimers and determine the kinetics of monomer-dimer and dimer-tetramer transitions. Using site-directed mutagenesis, we show that while slow domain swapping defines the rate of dimerization, conserved proline P80 is involved in the tetramerization process. We also demonstrate that the addition of a disulphide bond at the base of the engineered loop prevents domain swapping and dimer formation, also preventing subsequent tetramerization. Formation of SQT-1C oligomers compromises the presentation of inserted peptides for target molecule binding, diminishing aptamer activity; however, the introduction of the disulphide bond locking the monomeric state enables maximum specific aptamer activity, while also increasing its thermal and colloidal stability. We conclude that stabilizing scaffold proteins by adding disulphide bonds at peptide insertion sites might be a useful approach in preventing binding-epitope-driven oligomerization, enabling creation of very stable aptamers with maximum binding activity.
Collapse
|