1
|
Nguyen HT, Kan EL, Humayun M, Gurvich N, Offeddu GS, Wan Z, Coughlin MF, Renteria DC, Loew A, Wilson S, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Gillrie MR, Kamm RD. Patient-specific vascularized tumor model: Blocking monocyte recruitment with multispecific antibodies targeting CCR2 and CSF-1R. Biomaterials 2025; 312:122731. [PMID: 39153324 DOI: 10.1016/j.biomaterials.2024.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-β (CSF1R/CCR2/TGF-β Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ellen L Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Giovanni S Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark F Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Diana C Renteria
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andreas Loew
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Susan Wilson
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA, 02139, USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Nguyen HT, Gurvich N, Gillrie MR, Offeddu G, Humayun M, Kan EL, Wan Z, Coughlin MF, Zhang C, Vu V, Lee SWL, Tan SL, Barbie D, Hsu J, Kamm RD. Patient-Specific Vascularized Tumor Model: Blocking TAM Recruitment with Multispecific Antibodies Targeting CCR2 and CSF-1R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568627. [PMID: 38076998 PMCID: PMC10705378 DOI: 10.1101/2023.11.28.568627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Tumor-associated inflammation drives cancer progression and therapy resistance, with the infiltration of monocyte-derived tumor-associated macrophages (TAMs) associated with poor prognosis in diverse cancers. Targeting TAMs holds potential against solid tumors, but effective immunotherapies require testing on immunocompetent human models prior to clinical trials. Here, we develop an in vitro model of microvascular networks that incorporates tumor spheroids or patient tissues. By perfusing the vasculature with human monocytes, we investigate monocyte trafficking into the tumor and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via TAM-produced CCL7 and CCL2, mediated by CSF-1R. Additionally, we assess a novel multispecific antibody targeting CCR2, CSF-1R, and neutralizing TGF-β, referred to as CSF1R/CCR2/TGF-β Ab, on monocytes and macrophages using our 3D models. This antibody repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and effectively blocks monocyte migration. Finally, we show that the CSF1R/CCR2/TGF-β Ab inhibits monocyte recruitment in patient-specific vascularized tumor models. Overall, this vascularized tumor model offers valuable insights into monocyte recruitment and enables functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Huu Tuan Nguyen
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Nadia Gurvich
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Mark Robert Gillrie
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4 Canada
| | - Giovanni Offeddu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mouhita Humayun
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Ellen L. Kan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Zhengpeng Wan
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Mark Frederick Coughlin
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Christie Zhang
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Vivian Vu
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Sharon Wei Ling Lee
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Seng-Lai Tan
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - David Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan Hsu
- Marengo Therapeutics, 840 Memorial Dr, Cambridge, MA 02139 USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| |
Collapse
|
3
|
Li S, Zhao Y, Wen W, Ma Y, Liu S, Chen G, Ye Y. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens. Microsc Res Tech 2023; 86:1391-1400. [PMID: 37119118 DOI: 10.1002/jemt.24337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
We describe a simple and robust calibration approach for axial-scanning microscopy that realizes axial focus shifts with an electrically tunable lens (ETL). We demonstrate the calibration approach based on a microscope with an ETL placed close to the rear stop of the objective lens. By introducing a target-consisted of repeating lines at one known frequency and placed at a ~45° angle to the imaging path, the calibration method captures multiple images at different ETL currents and calibrates the dependence of the axial focus shift on the ETL current by evaluating the sharpness of the captured images. It calibrates the dependence of the magnification of the microscope on the ETL current by measuring the period of the repeating lines in the captured images. The experimental results show that different from the conventional calibration procedure, the proposed scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the ETL current. This might facilitate imaging studies that require the measurement of fine structures in a 3D volume. We also show the calibration procedure can be used to estimate the radius of a conner-arc sample, fabricated using laser micromachining. We believe that this easy-to-use calibration approach may facilitate use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods. RESEARCH HIGHLIGHTS: The proposed calibration scheme does not involve any mechanical scanning and can simultaneously calibrate the dependence of the axial focus shift and the magnification on the electrically tunable lens (ETL) current. It might facilitate imaging studies that require the measurement of fine structures in a 3D volume, and the use of ETLs for a variety of imaging platforms. It may also provide new insights for the development of novel 3D surface measurement methods.
Collapse
Affiliation(s)
- Shengfu Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Weifent Wen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yuncan Ma
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Shouxian Liu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Guanghua Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yan Ye
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| |
Collapse
|
4
|
Wang W, Schmidt K, Wapler MC, Wallrabe U, Czarske JW, Koukourakis N. Fully refractive telecentric f-theta microscope based on adaptive elements for 3D raster scanning of biological tissues. OPTICS EXPRESS 2023; 31:29703-29715. [PMID: 37710765 DOI: 10.1364/oe.496150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
Various techniques in microscopy are based on point-wise acquisition, which provides advantages in acquiring sectioned images, for example in confocal or two-photon microscopy. The advantages come along with the need to perform three-dimensional scanning, which is often realized by mechanical movement achieved by stage-scanning or piezo-based scanning in the axial direction. Lateral scanning often employs galvo-mirrors, leading to a reflective setup and hence to a folded beam path. In this paper, we introduce a fully refractive microscope capable of three-dimensional scanning, which employs the combination of an adaptive lens, an adaptive prism, and a tailored telecentric f-theta objective. Our results show that this microscope is capable to perform flexible three-dimensional scanning, with low scan-induced aberrations, at a uniform resolution over a large tuning range of X=Y=6300 μ m and Z=480 μ m with only transmissive components. We demonstrate the capabilities at the example of volumetric measurements on the transgenic fluorescence of the thyroid of a zebrafish embryo and mixed pollen grains. This is the first step towards flexible aberration-free volumetric smart microscopy of three-dimensional samples like embryos and organoids, which could be exploited for the demands in both lateral and axial dimensions in biomedical samples without compromising image quality.
Collapse
|
5
|
Gowda HGB, Wallrabe U, Wapler MC. Higher order wavefront correction and axial scanning in a single fast and compact piezo-driven adaptive lens. OPTICS EXPRESS 2023; 31:23393-23405. [PMID: 37475424 DOI: 10.1364/oe.493318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023]
Abstract
We present a compact adaptive glass membrane lens for higher order wavefront correction and axial scanning, driven by integrated segmented piezoelectric actuators. The membrane can be deformed in a combination of rotational symmetry providing focus control of up to ± 6 m-1 and spherical aberration correction of up to 5 wavelengths and different discrete symmetries to correct higher order aberrations such as astigmatism, coma and trefoil by up to 10 wavelengths. Our design provides a large clear aperture of 12 mm at an outer diameter of the actuator of 18 mm, a thickness of 2 mm and a response time of less than 2 ms.
Collapse
|
6
|
Yuan RY, Ma XL, Zheng Y, Jiang Z, Wang X, Liu C, Wang QH. 3D microscope image acquisition method based on zoom objective. OPTICS EXPRESS 2023; 31:16067-16080. [PMID: 37157693 DOI: 10.1364/oe.487720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microscopy is being pursued to obtain richer and more accurate information, and there are many challenges in imaging depth and display dimension. In this paper, we propose a three-dimensional (3D) microscope acquisition method based on a zoom objective. It enables 3D imaging of thick microscopic specimens with continuous adjustable optical magnification. The zoom objective based on liquid lenses can quickly adjust the focal length, to expand the imaging depth and change the magnification by adjusting the voltage. Based on the zoom objective, an arc shooting mount is designed to accurately rotate the objective to obtain the parallax information of the specimen and generate parallax synthesis images for 3D display. A 3D display screen is used to verify the acquisition results. The experimental results show that the obtained parallax synthesis images can accurately and efficiently restore the 3D characteristics of the specimen. The proposed method has promising applications in industrial detection, microbial observation, medical surgery, and so on.
Collapse
|
7
|
Wang Y, Keshavarz M, Barhouse P, Smith Q. Strategies for Regenerative Vascular Tissue Engineering. Adv Biol (Weinh) 2022; 7:e2200050. [PMID: 35751461 DOI: 10.1002/adbi.202200050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Vascularization remains one of the key challenges in creating functional tissue-engineered constructs for therapeutic applications. This review aims to provide a developmental lens on the necessity of blood vessels in defining tissue function while exploring stem cells as a suitable source for vascular tissue engineering applications. The intersections of stem cell biology, material science, and engineering are explored as potential solutions for directing vascular assembly.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Mozhgan Keshavarz
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Patrick Barhouse
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering University of California Irvine CA 92697 USA
- Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA
| |
Collapse
|
8
|
Krug B, Koukourakis N, Guck J, Czarske J. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. OPTICS EXPRESS 2022; 30:4748-4758. [PMID: 35209449 DOI: 10.1364/oe.449980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The impulsive stimulated Brillouin microscopy promises fast, non-contact measurements of the elastic properties of biological samples. The used pump-probe approach employs an ultra-short pulse laser and a cw laser to generate Brillouin signals. Modeling of the microscopy technique has already been carried out partially, but not for biomedical applications. The nonlinear relationship between pulse energy and Brillouin signal amplitude is proven with both simulations and experiments. Tayloring of the excitation parameters on the biologically relevant polyacrylamide hydrogels outline sub-ms temporal resolutions at a relative precision of <1%. Brillouin microscopy using the impulsive stimulated scattering therefore exhibits high potential for the measurements of viscoelastic properties of cells and tissues.
Collapse
|
9
|
Assignment of Focus Position with Convolutional Neural Networks in Adaptive Lens Based Axial Scanning for Confocal Microscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Adaptive lenses offer axial scanning without mechanical translation and thus are promising to replace mechanical-movement-based axial scanning in microscopy. The scan is accomplished by sweeping the applied voltage. However, the relation between the applied voltage and the resulting axial focus position is not unambiguous. Adaptive lenses suffer from hysteresis effects, and their behaviour depends on environmental conditions. This is especially a hurdle when complex adaptive lenses are used that offer additional functionalities and are controlled with more degrees of freedom. In such case, a common approach is to iterate the voltage and monitor the adaptive lens. Here, we introduce an alternative approach which provides a single shot estimation of the current axial focus position by a convolutional neural network. We use the experimental data of our custom confocal microscope for training and validation. This leads to fast scanning without photo bleaching of the sample and opens the door to automatized and aberration-free smart microscopy. Applications in different types of laser-scanning microscopes are possible. However, maybe the training procedure of the neural network must be adapted for some use cases.
Collapse
|
10
|
Lin PY, Hwang SPL, Lee CH, Chen BC. Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210219RR. [PMID: 34796706 PMCID: PMC8601431 DOI: 10.1117/1.jbo.26.11.116503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE Two-photon microscopy has become the standard platform for deep-tissue fluorescence imaging. However, the use of point scanning in conventional two-photon microscopy limits the speed of volumetric image acquisition. AIM To obtain fast and deep volumetric images, we combine two-photon light sheet fluorescence microscopy (2p-LSFM) and axicon imaging that yields an extended depth of field (DOF) in 2p-LSFM. APPROACH Axicon imaging is achieved by imposing an axicon lens in the detection part of LSFM. RESULTS The DOF with axicon imaging is extended more than 20-fold over that of a conventional imaging lens, liberating the synchronized scanning in LSFM. We captured images of dynamic beating hearts and red blood cells in zebrafish larvae at volume acquisition rates up to 30 Hz. CONCLUSIONS We demonstrate the fast three-dimensional imaging capability of 2p-LSFM with axicon imaging by recording the rapid dynamics of physiological processes.
Collapse
Affiliation(s)
- Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Wright T, Sparks H, Paterson C, Dunsby C. Video-rate remote refocusing through continuous oscillation of a membrane deformable mirror. JPHYS PHOTONICS 2021; 3:045004. [PMID: 34693207 PMCID: PMC8523955 DOI: 10.1088/2515-7647/ac29a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023] Open
Abstract
This paper presents the use of a deformable mirror (DM) configured to rapidly refocus a microscope employing a high numerical aperture (NA) objective lens. An Alpao DM97-15 membrane DM was used to refocus a 40×/0.80 NA water-immersion objective through a defocus range of -50-50 μm at 26.3 sweeps s-1. We achieved imaging with a mean Strehl metric of >0.6 over a field of view in the sample of 200 × 200 μm2 over a defocus range of 77 μm. We describe an optimisation procedure where the mirror is swept continuously in order to avoid known problems of hysteresis associated with the membrane DM employed. This work demonstrates that a DM-based refocusing system could in the future be used in light-sheet fluorescence microscopes to achieve video-rate volumetric imaging.
Collapse
Affiliation(s)
- Terry Wright
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Carl Paterson
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Centre for Pathology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
12
|
Gao Z, Radner H, Büttner L, Ye H, Li X, Czarske J. Distortion correction for particle image velocimetry using multiple-input deep convolutional neural network and Hartmann-Shack sensing. OPTICS EXPRESS 2021; 29:18669-18687. [PMID: 34154119 DOI: 10.1364/oe.419591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Aberrations degrade the accuracy of quantitative, imaging-based measurements, like particle image velocimetry (PIV). Adaptive optical elements can in principle correct the wavefront distortions, but are limited by their technical specifications. Here we propose an actuator-free correction based on a multiple-input deep convolutional neural network which uses an additional input from a wavefront sensor to correct time-varying distortions. It is applied for imaging flow velocimetry to conduct measurements through a fluctuating air-water phase boundary. Dataset for neural network is generated by an experimental setup with a deformable mirror. Correction performance of trained model is estimated in terms of image quality, which is improved significantly, and flow measurement results, where the errors induced by the distortion from fluctuating phase boundary can be corrected by 82 %. The technique has the potential to replace classical closed-loop adaptive optical systems where the performance of the actuators is not sufficient.
Collapse
|
13
|
Strother JA. Reduction of spherical and chromatic aberration in axial-scanning optical systems with tunable lenses. BIOMEDICAL OPTICS EXPRESS 2021; 12:3530-3552. [PMID: 34221677 PMCID: PMC8221928 DOI: 10.1364/boe.422936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Optical systems with integrated tunable lenses allow for rapid axial-scanning without mechanical translation of the components. However, changing the power of the tunable lens typically upsets aberration balancing across the system, introducing spherical and chromatic aberrations that limit the usable axial range. This study develops an analytical approximation for the tuning-induced spherical and axial chromatic aberration of a general optical system containing a tunable lens element. The resulting model indicates that systems can be simultaneously corrected for both tuning-induced spherical and chromatic aberrations by controlling the lateral magnification, coma, and pupil lateral color prior to the tunable surface. These insights are then used to design a realizable axial-scanning microscope system with a high numerical aperture and diffraction-limited performance over a wide field of view and deep axial range.
Collapse
|
14
|
Wapler MC, Testud F, Hucker P, Leupold J, von Elverfeldt D, Zaitsev M, Wallrabe U. MR-compatible optical microscope for in-situ dual-mode MR-optical microscopy. PLoS One 2021; 16:e0250903. [PMID: 33970948 PMCID: PMC8109821 DOI: 10.1371/journal.pone.0250903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
We present the development of a dual-mode imaging platform that combines optical microscopy with magnetic resonance microscopy. Our microscope is designed to operate inside a 9.4T small animal scanner with the option to use a 72mm bore animal RF coil or different integrated linear micro coils. With a design that minimizes the magnetic distortions near the sample, we achieved a field inhomogeneity of 19 ppb RMS. We further integrated a waveguide in the optical layout for the electromagnetic shielding of the camera, which minimizes the noise increase in the MR and optical images below practical relevance. The optical layout uses an adaptive lens for focusing, 2 × 2 modular combinations of objectives with 0.6mm to 2.3mm field of view and 4 configurable RGBW illumination channels and achieves a plano-apochromatic optical aberration correction with 0.6μm to 2.3μm resolution. We present the design, implementation and characterization of the prototype including the general optical and MR-compatible design strategies, a knife-edge optical characterization and different concurrent imaging demonstrations.
Collapse
Affiliation(s)
- Matthias C. Wapler
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| | - Frederik Testud
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Hucker
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxim Zaitsev
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for High-Field Magnetic Resonance, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ulrike Wallrabe
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Rajaeipour P, Dorn A, Banerjee K, Zappe H, Ataman Ç. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator. OPTICS EXPRESS 2020; 28:9944-9956. [PMID: 32225593 DOI: 10.1364/oe.387734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Adaptive optics (AO) represents a powerful range of image correction technologies with proven benefits for many life-science microscopy methods. However, the complexity of adding a reflective wavefront modulator and in some cases a wavefront sensor into an already complicated microscope has made AO prohibitive for its widespread adaptation in microscopy systems. We present here the design and performance of a compact fluorescence microscope using a fully refractive optofluidic wavefront modulator, yielding imaging performance on par with that of conventional deformable mirrors, both in correction fidelity and articulation. We combine this device with a modal sensorless wavefront estimation algorithm that uses spatial frequency content of acquired images as a quality metric and thereby demonstrate a completely in-line adaptive optics microscope that can perform aberration correction up to 4th radial order of Zernike modes. This entirely new concept for adaptive optics microscopy may prove to extend the performance limits and widespread applicability of AO in life-science imaging.
Collapse
|
16
|
Wapler MC. Ultra-fast, high-quality and highly compact varifocal lens with spherical aberration correction and low power consumption. OPTICS EXPRESS 2020; 28:4973-4987. [PMID: 32121727 DOI: 10.1364/oe.382472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 05/18/2023]
Abstract
We present a highly compact and fast varifocal lens with aspherical tunability based on an active piezo-glass-piezo sandwich membrane. Using an optimized geometry, improved fabrication and compliant elastomer structures together with an index-matched optical fluid, we achieved an outer diameter of just 9 mm (10 mm packaged) for a clear aperture of 7.6 mm. The range of the focal power was -7 m-1 to +6 m-1, with a wavefront error around 100 nm and a response time between 0.1 and 0.15 ms.
Collapse
|