1
|
Farré X, Blay N, Espinosa A, Castaño-Vinyals G, Carreras A, Garcia-Aymerich J, Cardis E, Kogevinas M, Goldberg X, de Cid R. Decoding depression by exploring the exposome-genome edge amidst COVID-19 lockdown. Sci Rep 2024; 14:13562. [PMID: 38866890 PMCID: PMC11169603 DOI: 10.1038/s41598-024-64200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Risk of depression increased in the general population after the COVID-19 pandemic outbreak. By examining the interplay between genetics and individual environmental exposures during the COVID-19 lockdown, we have been able to gain an insight as to why some individuals are more vulnerable to depression, while others are more resilient. This study, conducted on a Spanish cohort of 9218 individuals (COVICAT), includes a comprehensive non-genetic risk analysis, the exposome, complemented by a genomics analysis in a subset of 2442 participants. Depression levels were evaluated using the Hospital Anxiety and Depression Scale. Together with Polygenic Risk Scores (PRS), we introduced a novel score; Poly-Environmental Risk Scores (PERS) for non-genetic risks to estimate the effect of each cumulative score and gene-environment interaction. We found significant positive associations for PERSSoc (Social and Household), PERSLife (Lifestyle and Behaviour), and PERSEnv (Wider Environment and Health) scores across all levels of depression severity, and for PRSB (Broad depression) only for moderate depression (OR 1.2, 95% CI 1.03-1.40). On average OR increased 1.2-fold for PERSEnv and 1.6-fold for PERLife and PERSoc from mild to severe depression level. The complete adjusted model explained 16.9% of the variance. We further observed an interaction between PERSEnv and PRSB showing a potential mitigating effect. In summary, stressors within the social and behavioral domains emerged as the primary drivers of depression risk in this population, unveiling a mitigating interaction effect that should be interpreted with caution.
Collapse
Affiliation(s)
- Xavier Farré
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Research Group on the Impact of Chronic Diseases and Their Trajectories (GRIMTra), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Research Group on the Impact of Chronic Diseases and Their Trajectories (GRIMTra), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Ana Espinosa
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Carreras
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Elisabeth Cardis
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Ximena Goldberg
- ISGlobal, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- CIBER Salud Mental (CIBERSAM), Madrid, Spain.
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
- Research Group on the Impact of Chronic Diseases and Their Trajectories (GRIMTra), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| |
Collapse
|
2
|
Eszlari N, Hullam G, Gal Z, Torok D, Nagy T, Millinghoffer A, Baksa D, Gonda X, Antal P, Bagdy G, Juhasz G. Olfactory genes affect major depression in highly educated, emotionally stable, lean women: a bridge between animal models and precision medicine. Transl Psychiatry 2024; 14:182. [PMID: 38589364 PMCID: PMC11002013 DOI: 10.1038/s41398-024-02867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Most current approaches to establish subgroups of depressed patients for precision medicine aim to rely on biomarkers that require highly specialized assessment. Our present aim was to stratify participants of the UK Biobank cohort based on three readily measurable common independent risk factors, and to investigate depression genomics in each group to discover common and separate biological etiology. Two-step cluster analysis was run separately in males (n = 149,879) and females (n = 174,572), with neuroticism (a tendency to experience negative emotions), body fat percentage, and years spent in education as input variables. Genome-wide association analyses were implemented within each of the resulting clusters, for the lifetime occurrence of either a depressive episode or recurrent depressive disorder as the outcome. Variant-based, gene-based, gene set-based, and tissue-specific gene expression test were applied. Phenotypically distinct clusters with high genetic intercorrelations in depression genomics were found. A two-cluster solution was the best model in each sex with some differences including the less important role of neuroticism in males. In females, in case of a protective pattern of low neuroticism, low body fat percentage, and high level of education, depression was associated with pathways related to olfactory function. While also in females but in a risk pattern of high neuroticism, high body fat percentage, and less years spent in education, depression showed association with complement system genes. Our results, on one hand, indicate that alteration of olfactory pathways, that can be paralleled to the well-known rodent depression models of olfactory bulbectomy, might be a novel target towards precision psychiatry in females with less other risk factors for depression. On the other hand, our results in multi-risk females may provide a special case of immunometabolic depression.
Collapse
Grants
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391 and PD 146014, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. N. E. was supported by the ÚNKP-22-4-II-SE-1, and D. B. by the ÚNKP-22-4-I-SE-10 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. N. E. is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 143391, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. N. E. was supported by the ÚNKP-22-4-II-SE-1, and D. B. by the ÚNKP-23-4-II-SE-2 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
- This study was supported by the Hungarian National Research, Development, and Innovation Office, with grants K 139330, K 143391, and PD 146014, as well as 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (grant: 2017-1.2.1-NKP-2017-00002) and the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and by TKP2021-EGA-25, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. It was also supported by the National Research, Development, and Innovation Fund of Hungary under Grant TKP2021-EGA-02 and the European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Gabor Hullam
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Tamas Nagy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andras Millinghoffer
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Budapest, Hungary
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Bruncsics B, Hullam G, Bolgar B, Petschner P, Millinghoffer A, Gecse K, Eszlari N, Gonda X, Jones DJ, Burden ST, Antal P, Deakin B, Bagdy G, Juhasz G. Genetic risk of depression is different in subgroups of dietary ratio of tryptophan to large neutral amino acids. Sci Rep 2023; 13:4976. [PMID: 36973313 PMCID: PMC10042855 DOI: 10.1038/s41598-023-31495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Manipulation of intake of serotonin precursor tryptophan has been exploited to rapidly induce and alleviate depression symptoms. While studies show that this latter effect is dependent on genetic vulnerability to depression, the effect of habitual tryptophan intake in the context of predisposing genetic factors has not been explored. Our aim was to investigate the effect of habitual tryptophan intake on mood symptoms and to determine the effect of risk variants on depression in those with high and low tryptophan intake in the whole genome and specifically in serotonin and kynurenine pathways. 63,277 individuals in the UK Biobank with data on depressive symptoms and tryptophan intake were included. We compared two subpopulations defined by their habitual diet of a low versus a high ratio of tryptophan to other large amino acids (TLR). A modest protective effect of high dietary TLR against depression was found. NPBWR1 among serotonin genes and POLI in kynurenine pathway genes were significantly associated with depression in the low but not in the high TLR group. Pathway-level analyses identified significant associations for both serotonin and kynurenine pathways only in the low TLR group. In addition, significant association was found in the low TLR group between depressive symptoms and biological process related to adult neurogenesis. Our findings demonstrate a markedly distinct genetic risk profile for depression in groups with low and high dietary TLR, with association with serotonin and kynurenine pathway variants only in case of habitual food intake leading to low TLR. Our results confirm the relevance of the serotonin hypothesis in understanding the neurobiological background of depression and highlight the importance of understanding its differential role in the context of environmental variables such as complexity of diet in influencing mental health, pointing towards emerging possibilities of personalised prevention and intervention in mood disorders in those who are genetically vulnerable.
Collapse
Grants
- BME NC TKP2020, BME IE-BIO TKP2020, Artificial Intelligence National Laboratory Programme NRDI Fund based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology
- TKP2021-EGA-02 National Research, Development, and Innovation Fund of Hungary
- OTKA 139330 National Research, Development and Innovation Office, Hungary
- ÚNKP-21-5-BME-362 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-21-4-II-BME-143 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-3-II-SE-27 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ÚNKP-22-4-II-SE-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- ERAPERMED2019-108 National Research, Development and Innovation Office, Hungary , under the frame of ERA PerMed (2019-2.1.7-ERA-NET-2020-00005)
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- NAP2022-I-4/2022 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- 2017-1.2.1-NKP-2017-00002 Hungarian Brain Research Program
- P20809 Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research in Japan, standard program)
- TKP2021-EGA-25 Thematic Excellence Programme, Ministry of Innovation and Technology in Hungary, from the National Research, Development and Innovation Fund
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | - Bence Bolgar
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Andras Millinghoffer
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Debra J Jones
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Sorrel T Burden
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Muegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Gómez-Carrillo A, Paquin V, Dumas G, Kirmayer LJ. Restoring the missing person to personalized medicine and precision psychiatry. Front Neurosci 2023; 17:1041433. [PMID: 36845417 PMCID: PMC9947537 DOI: 10.3389/fnins.2023.1041433] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Precision psychiatry has emerged as part of the shift to personalized medicine and builds on frameworks such as the U.S. National Institute of Mental Health Research Domain Criteria (RDoC), multilevel biological "omics" data and, most recently, computational psychiatry. The shift is prompted by the realization that a one-size-fits all approach is inadequate to guide clinical care because people differ in ways that are not captured by broad diagnostic categories. One of the first steps in developing this personalized approach to treatment was the use of genetic markers to guide pharmacotherapeutics based on predictions of pharmacological response or non-response, and the potential risk of adverse drug reactions. Advances in technology have made a greater degree of specificity or precision potentially more attainable. To date, however, the search for precision has largely focused on biological parameters. Psychiatric disorders involve multi-level dynamics that require measures of phenomenological, psychological, behavioral, social structural, and cultural dimensions. This points to the need to develop more fine-grained analyses of experience, self-construal, illness narratives, interpersonal interactional dynamics, and social contexts and determinants of health. In this paper, we review the limitations of precision psychiatry arguing that it cannot reach its goal if it does not include core elements of the processes that give rise to psychopathological states, which include the agency and experience of the person. Drawing from contemporary systems biology, social epidemiology, developmental psychology, and cognitive science, we propose a cultural-ecosocial approach to integrating precision psychiatry with person-centered care.
Collapse
Affiliation(s)
- Ana Gómez-Carrillo
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Vincent Paquin
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Guillaume Dumas
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Precision Psychiatry and Social Physiology Laboratory at the CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Laurence J Kirmayer
- Culture, Mind, and Brain Program, Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
5
|
Gillett AC, Jermy BS, Lee SH, Pain O, Howard DM, Hagenaars SP, Hanscombe KB, Coleman JRI, Lewis CM. Exploring polygenic-environment and residual-environment interactions for depressive symptoms within the UK Biobank. Genet Epidemiol 2022; 46:219-233. [PMID: 35438196 PMCID: PMC9541465 DOI: 10.1002/gepi.22449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Substantial advances have been made in identifying genetic contributions to depression, but little is known about how the effect of genes can be modulated by the environment, creating a gene-environment interaction. Using multivariate reaction norm models (MRNMs) within the UK Biobank (N = 61294-91644), we investigate whether the polygenic and residual variance components of depressive symptoms are modulated by 17 a priori selected covariate traits-12 environmental variables and 5 biomarkers. MRNMs, a mixed-effects modelling approach, provide unbiased polygenic-covariate interaction estimates for a quantitative trait by controlling for outcome-covariate correlations and residual-covariate interactions. A continuous depressive symptom variable was the outcome in 17 MRNMs-one for each covariate trait. Each MRNM had a fixed-effects model (fixed effects included the covariate trait, demographic variables, and principal components) and a random effects model (where polygenic-covariate and residual-covariate interactions are modelled). Of the 17 selected covariates, 11 significantly modulate deviations in depressive symptoms through the modelled interactions, but no single interaction explains a large proportion of phenotypic variation. Results are dominated by residual-covariate interactions, suggesting that covariate traits (including neuroticism, childhood trauma, and BMI) typically interact with unmodelled variables, rather than a genome-wide polygenic component, to influence depressive symptoms. Only average sleep duration has a polygenic-covariate interaction explaining a demonstrably nonzero proportion of the variability in depressive symptoms. This effect is small, accounting for only 1.22% (95% confidence interval: [0.54, 1.89]) of variation. The presence of an interaction highlights a specific focus for intervention, but the negative results here indicate a limited contribution from polygenic-environment interactions.
Collapse
Affiliation(s)
- Alexandra C Gillett
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Bradley S Jermy
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Sang Hong Lee
- Australian Centre for Precision Health, University of South Australia, SA, Adelaide, Australia.,UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Saskia P Hagenaars
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ken B Hanscombe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK.,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
6
|
Petschner P, Baksa D, Hullam G, Torok D, Millinghoffer A, Deakin JFW, Bagdy G, Juhasz G. A replication study separates polymorphisms behind migraine with and without depression. PLoS One 2021; 16:e0261477. [PMID: 34972135 PMCID: PMC8719675 DOI: 10.1371/journal.pone.0261477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
The largest migraine genome-wide association study identified 38 candidate loci. In this study we assessed whether these results replicate on a gene level in our European cohort and whether effects are altered by lifetime depression. We tested SNPs of the loci and their vicinity with or without interaction with depression in regression models. Advanced analysis methods such as Bayesian relevance analysis and a neural network based classifier were used to confirm findings. Main effects were found for rs2455107 of PRDM16 (OR = 1.304, p = 0.007) and five intergenic polymorphisms in 1p31.1 region: two of them showed risk effect (OR = 1.277, p = 0.003 for both rs11209657 and rs6686879), while the other three variants were protective factors (OR = 0.4956, p = 0.006 for both rs12090642 and rs72948266; OR = 0.4756, p = 0.005 for rs77864828). Additionally, 26 polymorphisms within ADGRL2, 2 in REST, 1 in HPSE2 and 33 mostly intergenic SNPs from 1p31.1 showed interaction effects. Among clumped results representing these significant regions, only rs11163394 of ADGRL2 showed a protective effect (OR = 0.607, p = 0.002), all other variants were risk factors (rs1043215 of REST with the strongest effect: OR = 6.596, p = 0.003). Bayesian relevance analysis confirmed the relevance of intergenic rs6660757 and rs12128399 (p31.1), rs1043215 (REST), rs1889974 (HPSE2) and rs11163394 (ADGRL2) from depression interaction results, and the moderate relevance of rs77864828 and rs2455107 of PRDM16 from main effect analysis. Both main and interaction effect SNPs could enhance predictive power with the neural network based classifier. In summary, we replicated p31.1, PRDM16, REST, HPSE2 and ADGRL2 genes with classic genetic and advanced analysis methods. While the p31.1 region and PRDM16 are worthy of further investigations in migraine in general, REST, HPSE2 and ADGRL2 may be prime candidates behind migraine pathophysiology in patients with comorbid depression.
Collapse
Affiliation(s)
- Peter Petschner
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Andras Millinghoffer
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - J. F. William Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Eszlari N, Bruncsics B, Millinghoffer A, Hullam G, Petschner P, Gonda X, Breen G, Antal P, Bagdy G, Deakin JFW, Juhasz G. Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake. Nutrients 2021; 13:4396. [PMID: 34959947 PMCID: PMC8703428 DOI: 10.3390/nu13124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Past-oriented rumination and future-oriented worry are two aspects of perseverative negative thinking related to the neuroticism endophenotype and associated with depression and anxiety. Our present aim was to investigate the genomic background of these two aspects of perseverative negative thinking within separate groups of individuals with suboptimal versus optimal folate intake. We conducted a genome-wide association study in the UK Biobank database (n = 72,621) on the "rumination" and "worry" items of the Eysenck Personality Inventory Neuroticism scale in these separate groups. Optimal folate intake was related to lower worry, but unrelated to rumination. In contrast, genetic associations for worry did not implicate specific biological processes, while past-oriented rumination had a more specific genetic background, emphasizing its endophenotypic nature. Furthermore, biological pathways leading to rumination appeared to differ according to folate intake: purinergic signaling and circadian regulator gene ARNTL emerged in the whole sample, blastocyst development, DNA replication, and C-C chemokines in the suboptimal folate group, and prostaglandin response and K+ channel subunit gene KCNH3 in the optimal folate group. Our results point to possible benefits of folate in anxiety disorders, and to the importance of simultaneously taking into account genetic and environmental factors to determine personalized intervention in polygenic and multifactorial disorders.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
| | - Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Andras Millinghoffer
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál utca 2, H-1085 Budapest, Hungary
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Memory Lane, London SE5 8AF, UK;
- UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), London SE5 8AF, UK
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| |
Collapse
|
8
|
Gyorik D, Eszlari N, Gal Z, Torok D, Baksa D, Kristof Z, Sutori S, Petschner P, Juhasz G, Bagdy G, Gonda X. Every Night and Every Morn: Effect of Variation in CLOCK Gene on Depression Depends on Exposure to Early and Recent Stress. Front Psychiatry 2021; 12:687487. [PMID: 34512413 PMCID: PMC8428175 DOI: 10.3389/fpsyt.2021.687487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The role of circadian dysregulation is increasingly acknowledged in the background of depressive symptoms, and is also a promising treatment target. Similarly, stress shows a complex relationship with the circadian system. The CLOCK gene, encoding a key element in circadian regulation has been implicated in previous candidate variant studies in depression with contradictory findings, and only a few such studies considered the interacting effects of stress. We investigated the effect of CLOCK variation with a linkage-disequilibrium-based clumping method, in interaction with childhood adversities and recent negative life events, on two phenotypes of depression, lifetime depression and current depressive symptoms in a general population sample. Methods: Participants in NewMood study completed questionnaires assessing childhood adversities and recent negative life events, the Brief Symptom Inventory to assess current depressive symptoms, provided data on lifetime depression, and were genotyped for 1054 SNPs in the CLOCK gene, 370 of which survived quality control and were entered into linear and logistic regression models with current depressive symptoms and lifetime depression as the outcome variable, and childhood adversities or recent life events as interaction variables followed by a linkage disequilibrium-based clumping process to identify clumps of SNPs with a significant main or interaction effect. Results: No significant clumps with a main effect were found. In interaction with recent life events a significant clump containing 94 SNPs with top SNP rs6825994 for dominant and rs6850524 for additive models on current depression was identified, while in interaction with childhood adversities on current depressive symptoms, two clumps, both containing 9 SNPs were found with top SNPs rs6828454 and rs711533. Conclusion: Our findings suggest that CLOCK contributes to depressive symptoms, but via mediating the effects of early adversities and recent stressors. Given the increasing burden on circadian rhythmicity in the modern lifestyle and our expanding insight into the contribution of circadian disruption in depression especially as a possible mediator of stress, our results may pave the way for identifying those who would be at an increased risk for depressogenic effects of circadian dysregulation in association with stress as well as new molecular targets for intervention in stress-related psychopathologies in mood disorders.
Collapse
Affiliation(s)
- Dorka Gyorik
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Chu X, Ye J, Wen Y, Li P, Cheng B, Cheng S, Zhang L, Liu L, Qi X, Ma M, Liang C, Kafle OP, Wu C, Wang S, Wang X, Ning Y, Zhang F. Maternal smoking during pregnancy and risks to depression and anxiety in offspring: An observational study and genome-wide gene-environment interaction analysis in UK biobank cohort. J Psychiatr Res 2021; 140:149-158. [PMID: 34118634 DOI: 10.1016/j.jpsychires.2021.05.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maternal smoking during pregnancy (MSDP) has been reported to be associated with increased anxiety and depression behaviors in offspring. However, there is still scant evidence to support the link between MSDP and anxiety/depression. METHODS Using the subjects from the UK Biobank cohort (n = 371,903-432,881). Logistic regression analyses were first conducted to test the correlation between MSDP and anxiety/depression in offspring. Second, genome-wide gene-environment interaction study (GWGEIS) analyses were conducted by PLINK, using MSDP as environmental factor. Genetic correlation analysis of anxiety/depression and smoking was conducted by the LDSC software using the published genome-wide association study (GWAS) summary data of four smoking traits (n = 337,334-1,232,091), anxiety (n = 31,880) and depression (n = 490,359). Finally, pathway enrichment analysis was carried out to detect the pathway involved in the development of offspring anxiety caused by the interaction of MSDP × SNPs. RESULTS Observational analyses showed that anxiety and depression status in offspring were significantly associated with MSDP (all p < 0.0001). Further GWEGI analyses observed significant MSDP-gene interaction effects at UNC80 gene for anxiety (p = 9.09 × 10-9). LDSC did not detect significant genetic correlation between anxiety and smoking traits. Pathway analysis identified 19 significant pathways for anxiety, such as MANALO_HYPOXIA_UP (FDR = 5.50 × 10-4), REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS (FDR = 0.0304) and ONDER_CDH1_TARGETS_2_UP (FDR = 0.0371). CONCLUSION Our study results suggested the important impact of MDSP on the risk of anxiety in offspring, partly attributing to environment-gene interactions effects.
Collapse
Affiliation(s)
- Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Canli T. A model of human endogenous retrovirus (HERV) activation in mental health and illness. Med Hypotheses 2019; 133:109404. [PMID: 31557593 DOI: 10.1016/j.mehy.2019.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Despite strong evidence for the heritability of major depressive disorder (MDD), efforts to identify causal genes have been disappointing. Furthermore, although there is strong support for life stress as a major predictor of MDD, there are also considerable individual differences in susceptibility and resilience that remain poorly understood. Efforts to identify specific gene-by-environment risk factors produced results that were initially encouraging, but that were not supported by later large-scale studies. Here I propose a novel mechanism that could address the "missing heritability" of MDD, the role of environmental risk factors, and individual differences in susceptibility and resilience. This mechanism focuses on a class of transposable elements, Human Endogenous Retroviruses (HERVs), which make up approximately 8% of the human genome as the result of ancient retroviral infections that entered mammalian germ lines throughout the course of evolution. My primary hypothesis is that exposure to either exogenous viruses or traumatic experiences can activate HERVs in the brain to cause depressive (and possibly other psychiatric) symptoms. My secondary hypothesis is that individual differences in vulnerability or resilience result from the balance of activated HERVs with pathogenic versus protective functions in the brain. Future research can test these hypotheses by analysis of postmortem human brain tissue from donors with known viral or trauma histories; animal studies manipulating HERV expression; cell culture studies examining regulatory mechanisms of HERV expression; and from brain imaging studies of individuals with known HERV-expression. Such research may reveal novel functions of HERVs in neural tissue and may lead to a new generation of psychiatric interventions designed to target aberrant HERV activation.
Collapse
MESH Headings
- Animals
- Brain/virology
- Cells, Cultured
- Cytokines/physiology
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/virology
- Disease Models, Animal
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Environmental Exposure
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Gene-Environment Interaction
- Genes, Viral
- Humans
- Intercellular Signaling Peptides and Proteins/physiology
- Mice, Transgenic
- Models, Biological
- Models, Psychological
- Schizophrenia/pathology
- Schizophrenia/virology
- Stress, Psychological
- Terminal Repeat Sequences/genetics
- Virus Activation
- Virus Diseases/complications
- Virus Diseases/psychology
Collapse
Affiliation(s)
- Turhan Canli
- Departments of Psychology and Psychiatry, Stony Brook University, Stony Brook, NY 11794-2500, USA.
| |
Collapse
|