1
|
Kertesz V, Khalid M, Retterer ST, Cahill JF. Structure-Driven Liquid Microjunction Surface-Sampling Probe Mass Spectrometry. Anal Chem 2023; 95:14521-14525. [PMID: 37738474 DOI: 10.1021/acs.analchem.3c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The rhizosphere is the narrow region of soil surrounding the roots of plants that is influenced by root exudates, root secretions, and associated microbial communities. This region is crucial to plant growth and development and plays a critical role in nutrient uptake, disease resistance, and soil transformation. Understanding the function of exogenous compounds in the rhizosphere starts with determining the spatiotemporal distribution of these molecular components. Using liquid microjunction surface-sampling probe mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes enables in situ, nondisruptive, and nondestructive spatiotemporal measurement of exogenous compounds from plant roots. However, long imaging times (>2 h) can negatively affect plant heath and limit temporal studies. Here, we present a novel strategy to optimize the number and location of sampling sites on these microporous membrane-covered microfluidic devices. This novel, "structure-driven" sampling workflow takes into consideration the channel structure of the microfluidic device to maximize sampling from the channels and minimize acquisition time (∼4× less time in some cases while providing similar chemical image accuracy), thus reducing stress on plants during in situ LMJ-SSP-MS analysis.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
2
|
Kaiser CF, Perilli A, Grossmann G, Meroz Y. Studying root-environment interactions in structured microdevices. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad122. [PMID: 37042515 PMCID: PMC10353529 DOI: 10.1093/jxb/erad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/19/2023]
Abstract
In negotiating with the environment, plant roots integrate sensory information over space and time, as the basis of decision making in roots under non-uniform conditions. The complexity and dynamic properties of soil across spatial and temporal scales pose a significant technical challenge for research on mechanisms that drive metabolism, growth and development in roots, as well as on inter-organismal networks in the rhizosphere. Synthetic environments, combining microscopic access and manipulation capabilities with soil-like heterogeneity, are needed to elucidate the intriguing tug-of-war that characterises subsurface ecosystems. Microdevices have provided opportunities for innovative approaches to observe, analyse and manipulate plant roots and advanced our understanding of their development, physiology and interactions with the environment. Initially conceived as perfusion platforms for root cultivation under hydroponic conditions, microdevice design has, in recent years, increasingly shifted to better reflect the complex growth conditions in soil. Heterogeneous micro-environments have been created through co-cultivation with microbes, laminar flow-based local stimulation and physical obstacles and constraints. As such, structured microdevices provide an experimental entry point to the complex network behaviour of soil communities.
Collapse
Affiliation(s)
- Christian-Frederic Kaiser
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alessia Perilli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Walton CL, Khalid M, Bible AN, Kertesz V, Retterer ST, Morrell-Falvey J, Cahill JF. In Situ Detection of Amino Acids from Bacterial Biofilms and Plant Root Exudates by Liquid Microjunction Surface-Sampling Probe Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1615-1625. [PMID: 35904879 DOI: 10.1021/jasms.2c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components. A major challenge for spatiotemporal measurements is developing a nondisruptive and nondestructive technique capable of analyzing the exogenous compounds contained within the environment. A methodology using liquid microjunction-surface sampling probe-mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes was developed for in situ, spatiotemporal measurement of amino acids (AAs) from bacterial biofilms and plant roots. Exuded arginine was measured from a living Pantoea YR343 biofilm, which resulted in a chemical image indicative of biofilm growth within the device. Spot sampling along the roots of Populus trichocarpa with the LMJ-SSP-MS resulted in the detection of 15 AAs. Variation in AA concentrations across the root system was observed, indicating that exudation is not homogeneous and may be linked to local rhizosphere architecture and different biological processes along the root.
Collapse
Affiliation(s)
- Courtney L Walton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Jennifer Morrell-Falvey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
4
|
Aufrecht J, Khalid M, Walton CL, Tate K, Cahill JF, Retterer ST. Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip. LAB ON A CHIP 2022; 22:954-963. [PMID: 35089295 DOI: 10.1039/d1lc00705j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
Collapse
Affiliation(s)
- Jayde Aufrecht
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Courtney L Walton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kylee Tate
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
5
|
Identifying Candidate Biomarkers of Ionizing Radiation in Human Pulmonary Microvascular Lumens Using Microfluidics-A Pilot Study. MICROMACHINES 2021; 12:mi12080904. [PMID: 34442526 PMCID: PMC8402207 DOI: 10.3390/mi12080904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022]
Abstract
The microvasculature system is critical for the delivery and removal of key nutrients and waste products and is significantly damaged by ionizing radiation. Single-cell capillaries and microvasculature structures are the primary cause of circulatory dysfunction, one that results in morbidities leading to progressive tissue and organ failure and premature death. Identifying tissue-specific biomarkers that are predictive of the extent of tissue and organ damage will aid in developing medical countermeasures for treating individuals exposed to ionizing radiation. In this pilot study, we developed and tested a 17 µL human-derived microvascular microfluidic lumen for identifying candidate biomarkers of ionizing radiation exposure. Through mass-spectrometry-based proteomics, we detected 35 proteins that may be candidate early biomarkers of ionizing radiation exposure. This pilot study demonstrates the feasibility of using humanized microfluidic and organ-on-a-chip systems for biomarker discovery studies. A more elaborate study of sufficient statistical power is needed to identify candidate biomarkers and test medical countermeasures of ionizing radiation.
Collapse
|
6
|
Yee MO, Kim P, Li Y, Singh AK, Northen TR, Chakraborty R. Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. Front Microbiol 2021; 12:625752. [PMID: 33841353 PMCID: PMC8032546 DOI: 10.3389/fmicb.2021.625752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
The rhizosphere is a dynamic ecosystem shaped by complex interactions between plant roots, soil, microbial communities and other micro- and macro-fauna. Although studied for decades, critical gaps exist in the study of plant roots, the rhizosphere microbiome and the soil system surrounding roots, partly due to the challenges associated with measuring and parsing these spatiotemporal interactions in complex heterogeneous systems such as soil. To overcome the challenges associated with in situ study of rhizosphere interactions, specialized plant growth chamber systems have been developed that mimic the natural growth environment. This review discusses the currently available lab-based systems ranging from widely known rhizotrons to other emerging devices designed to allow continuous monitoring and non-destructive sampling of the rhizosphere ecosystems in real-time throughout the developmental stages of a plant. We categorize them based on the major rhizosphere processes it addresses and identify their unique challenges as well as advantages. We find that while some design elements are shared among different systems (e.g., size exclusion membranes), most of the systems are bespoke and speaks to the intricacies and specialization involved in unraveling the details of rhizosphere processes. We also discuss what we describe as the next generation of growth chamber employing the latest technology as well as the current barriers they face. We conclude with a perspective on the current knowledge gaps in the rhizosphere which can be filled by innovative chamber designs.
Collapse
Affiliation(s)
- Mon Oo Yee
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Kim
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Yifan Li
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Trent R. Northen
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Cahill JF, Khalid M, Retterer ST, Walton CL, Kertesz V. In Situ Chemical Monitoring and Imaging of Contents within Microfluidic Devices Having a Porous Membrane Wall Using Liquid Microjunction Surface Sampling Probe Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:832-839. [PMID: 32233378 DOI: 10.1021/jasms.9b00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to observe dynamic chemical processes (e.g., signaling, transport, etc.) in vivo or in situ using nondestructive chemical imaging opens a new door to understanding the complex dynamics of developing biological systems. With the advent of "biology-on-a-chip" devices has come the ability to monitor dynamic chemical processes in a controlled environment, using these engineered habitats to capture key features of natural systems while allowing visual observation of system development. Having the capability to spatially and temporally map the chemical signals within these devices may yield new insights into the forces that drive biosystem development. Here, a porous membrane sealed microfluidic device was designed to allow normal microfluidic operation while enabling continuous, location specific sampling and chemical characterization by liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS). LMJ-SSP was used to extract fluids with nL-to-μL/min flow rates directly from selected areas of the microfluidic device without negatively impacting the device function. These extracts were subsequently characterized using MS. This technique was used to acquire MS images of the entirety of several multi-input microfluidic devices having different degrees of fluid mixing. LMJ-SSP MS imaging visualized the spatial distribution of chemical components within the microfluidic channels and could visualize chemical reactions occurring in the device. These microfluidic devices with a porous membrane wall are wholly compatible with the construction of biology-on-a-chip devices. This ultimately would enable correlation of biosystem physical structure with an evolving chemical environment.
Collapse
Affiliation(s)
- John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Courtney L Walton
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|