1
|
Wen J, Zhou R, Jiang F, Chen Z, Sun M, Li H, Wu Z. SlCathB2 as a negative regulator mediates a novel regulatory pathway upon high-temperature stress response in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14267. [PMID: 38566236 DOI: 10.1111/ppl.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
High-temperature stress (HS) is a major abiotic stress that affects the yield and quality of plants. Cathepsin B-like protease 2 (CathB2) has been reported to play a role in developmental processes and stress response, but its involvement in HS response has not been identified. Here, overexpression, virus-induced gene silencing (VIGS)and RNA-sequencing analysis were performed to uncover the functional characteristics of SlCathB2-1 and SlCathB2-2 genes for HS response in tomato. The results showed that overexpression of SlCathB2-1 and SlCathB2-2 resulted in reduced heat tolerance of tomato to HS while silencing the genes resulted in enhanced heat tolerance. RNA-sequencing analysis revealed that the heat shock proteins (HSPs) exhibited higher expression in WT than in SlCathB2-1 and SlCathB2-2 overexpression lines. Furthermore, the possible molecular regulation mechanism underlying SlCathB2-1 and SlCathB2-2-mediated response to HS was investigated. We found that SlCathB2-1 and SlCathB2-2 negatively regulated antioxidant capacity by regulating a set of genes involved in antioxidant defence and reactive oxygen species (ROS) signal transduction. We also demonstrated that SlCathB2-1 and SlCathB2-2 positively regulated ER-stress-induced PCD (ERSID) by regulating unfolded protein response (UPR) gene expression. Furthermore, SlCathB2-1 and SlCathB2-2 interacting with proteasome subunit beta type-4 (PBA4) was identified in the ERSID pathway using yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) screening. Overall, the study identified both SlCathB2-1 and SlCathB2-2 as new negative regulators to HS and presented a new HS response pathway. This provided the foundation for the construction of heat-tolerant molecular mechanisms and breeding strategies aiming to improve the thermotolerance of tomato plants.
Collapse
Affiliation(s)
- Junqin Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zheng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mintao Sun
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haolong Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Xu P, Xu J, Guo Q, Xu Z, Ji W, Yu H, Cai J, Zhao L, Zhao J, Liu J, Chen X, Shen X. A recessive LRR-RLK gene causes hybrid breakdown in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:189. [PMID: 37582982 DOI: 10.1007/s00122-023-04427-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
KEY MESSAGE An LRR-RLK gene causing interspecific hybrid breakdown between Gossypium. anomalum and G. hirsutum was identified by deploying a map-based cloning strategy. The self-destructing symptoms of hybrid incompatibility in most cases are attributed to autoimmunity. The cloning of genes responsible for hybrid incompatibility in cotton is helpful to clarify the mechanisms underlying hybrid incompatibility and can break the barriers in distant hybridization. In this study, a temperature-dependent lethality was identified in CSSL11-9 (chromosome segment substitution line) with Gossypium anomalum chromosome segment on chromosome A11. Transcriptome analysis showed the differentially expressed genes related to autoimmune responses were highly enriched, suggesting that expression of CSSL11-9 plant lethal gene activated autoimmunity in the absence of any pathogen or external stimulus, inducing programmed cell death (PCD) and causing a lethal phenotype. The lethal phenotype was controlled by a pair of recessive genes and then fine mapped between JAAS3191-JAAS3050 interval, which covered 63.87 kb in G. hirsutum genome and 98.66 kb in G. anomalum. We demonstrated that an LRR-RLK gene designated as hybrid breakdown 1 (GoanoHBD1) was the causal gene underlying this locus for interspecific hybrid incompatibility between G. anomalum and G. hirsutum. Silencing this LRR-RLK gene could restore CSSL11-9 plants from a lethal to a normal phenotype. Our findings provide new insights into reproductive isolation and may benefit cotton breeding.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianwen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Ji
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huan Yu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jihong Cai
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianglong Chen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
3
|
Liu L, Qin L, Safdar LB, Zhao C, Cheng X, Xie M, Zhang Y, Gao F, Bai Z, Huang J, Bhalerao RP, Liu S, Wei Y. The plant trans-Golgi network component ECHIDNA regulates defense, cell death, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2023; 191:558-574. [PMID: 36018261 PMCID: PMC9806577 DOI: 10.1093/plphys/kiac400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Li Qin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Luqman Bin Safdar
- School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond 5064, Australia
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, S-901 83, Sweden
| | | | | |
Collapse
|
4
|
The RPN12a proteasome subunit is essential for the multiple hormonal homeostasis controlling the progression of leaf senescence. Commun Biol 2022; 5:1043. [PMID: 36180574 PMCID: PMC9525688 DOI: 10.1038/s42003-022-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
The 26S proteasome is a conserved multi-subunit machinery in eukaryotes. It selectively degrades ubiquitinated proteins, which in turn provides an efficient molecular mechanism to regulate numerous cellular functions and developmental processes. Here, we studied a new loss-of-function allele of RPN12a, a plant ortholog of the yeast and human structural component of the 19S proteasome RPN12. Combining a set of biochemical and molecular approaches, we confirmed that a rpn12a knock-out had exacerbated 20S and impaired 26S activities. The altered proteasomal activity led to a pleiotropic phenotype affecting both the vegetative growth and reproductive phase of the plant, including a striking repression of leaf senescence associate cell-death. Further investigation demonstrated that RPN12a is involved in the regulation of several conjugates associated with the auxin, cytokinin, ethylene and jasmonic acid homeostasis. Such enhanced aptitude of plant cells for survival in rpn12a contrasts with reports on animals, where 26S proteasome mutants generally show an accelerated cell death phenotype.
Collapse
|
5
|
Behling AH, Winter DJ, Ganley ARD, Cox MP. Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression. J Evol Biol 2022; 35:1126-1137. [PMID: 35830478 PMCID: PMC9546207 DOI: 10.1111/jeb.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near‐instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome‐wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans‐acting cross‐talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high‐level expression outcomes, regardless of the particular species or kingdom.
Collapse
Affiliation(s)
- Anna H Behling
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Rosnoblet C, Chatelain P, Klinguer A, Bègue H, Winckler P, Pichereaux C, Wendehenne D. The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2636-2655. [PMID: 33908641 DOI: 10.1111/pce.14073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the number of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ubiquitinated proteins. A similar process occurred in leaves overexpressing transiently Rpn3, a proteasome subunit. Cdc48 being involved in plant immunity, its regulation of UPS was also investigated in response to cryptogein, an elicitor of immune responses. In the cell lines stably overexpressing Cdc48 and in leaves transiently overexpressing Cdc48 and/or Rpn3, cryptogein triggered a premature cell death while no increase of the proteasomal activity occurred. Overall, this study highlights a role for Cdc48 in ubiquitin homeostasis and confirms its involvement, as well as that of Rpn3, in the processes underlying the hypersensitive response.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Laboratory of Parasitology and Mycology, Dijon University Hospital, Dijon, France
| | - Pascale Winckler
- Plateforme DimaCell, PAM UMR A 02.102, Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
7
|
Nakata K, Nagashima H, Inaba N, Yamashita H, Shinozaki Y, Kanekatsu M, Marubashi W, Yamada T. Analysis of the possible cytogenetic mechanism for overcoming hybrid lethality in an interspecific cross between Nicotiana suaveolens and Nicotiana tabacum. Sci Rep 2021; 11:7812. [PMID: 33837225 PMCID: PMC8035154 DOI: 10.1038/s41598-021-87242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Hybrid lethality is a type of reproductive isolation in which hybrids die before maturation, due to the interaction between the two causative genes derived from each of the hybrid parents. The interspecific hybrid of Nicotiana suaveolens × Nicotiana tabacum is a model plant used in studies on hybrid lethality. While most of the progeny produced from such a cross die, some individuals grow normally and mature. Separately, a technique for producing mature hybrids by artificial culture has been developed. However, the mechanism by which hybrids overcome lethality, either spontaneously or by artificial culture, remains unclear. In the present study, we found that some hybrids that overcome lethality, either spontaneously or by artificial culture, lack the distal part of the Q chromosome, a region that includes the gene responsible for lethality. Quantitative polymerase chain reaction results suggested that the distal deletion of the Q chromosome, detected in some hybrid seedlings that overcome lethality, is caused by reciprocal translocations between homoeologous chromosomes. The results showed that chromosomal instability during meiosis in amphidiploid N. tabacum as well as during artificial culturing of hybrid seedlings is involved in overcoming hybrid lethality in interspecific crosses of the genus Nicotiana.
Collapse
Affiliation(s)
- Kouki Nakata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Hiroki Nagashima
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Natsuki Inaba
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Haruka Yamashita
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
- Division of Evolutionary Genetics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Yoshihito Shinozaki
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Motoki Kanekatsu
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Wataru Marubashi
- Faculty of Agricultural Science, Meiji University, Kanagawa, Japan
| | - Tetsuya Yamada
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan.
| |
Collapse
|
8
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
9
|
Shiragaki K, Nakamura R, Nomura S, He H, Yamada T, Marubashi W, Oda M, Tezuka T. Phenylalanine ammonia-lyase and phenolic compounds are related to hybrid lethality in the cross Nicotiana suaveolens× N. tabacum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:327-333. [PMID: 33088196 PMCID: PMC7557668 DOI: 10.5511/plantbiotechnology.20.0606a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Hybrid lethality observed in hybrid seedlings between Nicotiana suaveolens and N. tabacum is characterized by browning, initially of the hypocotyls and eventually of entire seedlings. We investigated the mechanism underlying this browning of tissues. A phenylalanine ammonia-lyase (PAL) gene codes an enzyme involved in a pathway producing phenolic compounds related to the browning of plant tissues. The expression of PAL rapidly increased with the induction of hybrid lethality. Phenolic compounds were observed to be accumulated in whole parts of hybrid seedlings. Treatment of hybrid seedlings with L-2-aminooxy-3-phenylpropionic acid (AOPP), an inhibitor for PAL, suppressed browning and decreased the phenolic content of hybrid seedlings. Although programmed cell death (PCD) was involved in hybrid lethality, AOPP treatment also suppressed cell death and enhanced the growth of hybrid seedlings. These results indicated that PAL is involved in hybrid lethality, and phenolic compounds could be the cause of hybrid lethality-associated tissue browning.
Collapse
Affiliation(s)
- Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Rie Nakamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Shigeki Nomura
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Tetsuya Yamada
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Wataru Marubashi
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
10
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|