1
|
Zou T, Liu JY, Liu ZQ, Xiao D, Chen J. The Role of ADCY1 in Regulating the Sensitivity of Platinum-Based Chemotherapy in NSCLC. Pharmaceuticals (Basel) 2024; 17:1118. [PMID: 39338283 PMCID: PMC11434658 DOI: 10.3390/ph17091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated with platinum-based chemotherapy resistance in lung cancer patients in our previous research. In this study, we wanted to identify the mechanism of ADCY1 affecting platinum resistance. We used an MTT assay to find if the expression of ADCY1 is associated with the sensitivity of cisplatin in A549, H1299, and A549-DDP cells. Then, we performed CCK-8 tests to detect the absorbance of these cells stimulated by ADCY1, which can discover the cell proliferation that is affected by ADCY1. We investigated cell apoptosis and cell cycles regulated by ADCY1 through the flow cytometry assay. RNA sequencing was used to find the downstream genes affected by ADCY1 which may be associated with drug resistance in lung cancer patients. ADCY1 has higher expression in lung cancer cells than in normal cells. ADCY1 can affect cisplatin resistance in lung cancer cells by regulating cell proliferation, cell apoptosis, and the cell cycle. It may control cell apoptosis by regulating the classical apoptosis biomarkers Bax and Bcl2. Our study showed that ADCY1 may be a new biomarker in the prognosis of lung cancer patients. Much work remains to be carried out to clarify the mechanism in this important emerging field.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhao-Qian Liu
- Hunan Key Laboratory of Pharmacogenetics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Xiao
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Cressey R, Han MTT, Khaodee W, Xiyuan G, Qing Y. Navigating PRKCSH's impact on cancer: from N-linked glycosylation to death pathway and anti-tumor immunity. Front Oncol 2024; 14:1378694. [PMID: 38571496 PMCID: PMC10987803 DOI: 10.3389/fonc.2024.1378694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
PRKCSH, also known as Glucosidase II beta subunit (GluIIβ), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIβ), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH's involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH's diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH's precise role and validate its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Worapong Khaodee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Guo Xiyuan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yuan Qing
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wang Q, Wang X, Li J, Yin T, Wang Y, Cheng L. PRKCSH serves as a potential immunological and prognostic biomarker in pan-cancer. Sci Rep 2024; 14:1778. [PMID: 38245572 PMCID: PMC10799934 DOI: 10.1038/s41598-024-52153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Protein kinase C substrate 80K-H (PRKCSH) plays a crucial role in the protein N-terminal glycosylation process, with emerging evidence implicating its involvement in tumorigenesis. To comprehensively assess PRKCSH's significance across cancers, we conducted a pan-cancer analysis using data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We assessed aberrant PRKCSH mRNA and protein expression, examined its prognostic implications, and identified correlations with clinical features, tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immunity across cancer types. We explored PRKCSH gene alterations, DNA methylation, and their impact on patient prognosis. Gene Set Enrichment Analysis (GSEA) and single-cell analysis revealed potential biological roles. Additionally, we investigated drug susceptibility and conducted Connectivity Map (Cmap) analysis. Key findings revealed that PRKCSH exhibited overexpression in most tumors, with a significant association with poor overall survival (OS) in six cancer types. Notably, PRKCSH expression demonstrated variations across disease stages, primarily increasing in advanced stages among eleven tumor types. Moreover, PRKCSH exhibited significant correlations with TMB in five cancer categories, MSI in eight, and displayed associations with immune cell populations in pan-cancer analysis. Genetic variations in PRKCSH were identified across 26 tumor types, suggesting favorable disease-free survival. Furthermore, PRKCSH methylation displayed a significant negative correlation with its expression in 27 tumor types, with a marked decrease compared to normal tissues in ten tumors. Cmap predicted 24 potential therapeutic small molecules in over four cancer types. This study highlights that PRKCSH, as a potential oncogene, may be a promising prognostic marker and therapeutic target of immunotherapy for a range of malignancies.
Collapse
Affiliation(s)
- Qiankun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Khaodee W, Xiyuan G, Han MTT, Tayapiwatana C, Chiampanichayakul S, Anuchapreeda S, Cressey R. Transcriptomic analysis of glucosidase II beta subunit (GluIIß) knockout A549 cells reveals its roles in regulation of cell adhesion molecules (CAMs) and anti-tumor immunity. BMC Genomics 2024; 25:82. [PMID: 38245670 PMCID: PMC10799456 DOI: 10.1186/s12864-023-09888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/09/2023] [Indexed: 01/22/2024] Open
Abstract
Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIβ knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells.Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.
Collapse
Affiliation(s)
- Worapong Khaodee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Guo Xiyuan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
6
|
Xie X, Kong S, Cao W. Targeting protein glycosylation to regulate inflammation in the respiratory tract: novel diagnostic and therapeutic candidates for chronic respiratory diseases. Front Immunol 2023; 14:1168023. [PMID: 37256139 PMCID: PMC10225578 DOI: 10.3389/fimmu.2023.1168023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Protein glycosylation is a widespread posttranslational modification that can impact the function of proteins. Dysregulated protein glycosylation has been linked to several diseases, including chronic respiratory diseases (CRDs). CRDs pose a significant public health threat globally, affecting the airways and other lung structures. Emerging researches suggest that glycosylation plays a significant role in regulating inflammation associated with CRDs. This review offers an overview of the abnormal glycoenzyme activity and corresponding glycosylation changes involved in various CRDs, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, non-cystic fibrosis bronchiectasis, and lung cancer. Additionally, this review summarizes recent advances in glycomics and glycoproteomics-based protein glycosylation analysis of CRDs. The potential of glycoenzymes and glycoproteins for clinical use in the diagnosis and treatment of CRDs is also discussed.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiqian Cao
- Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
8
|
Lin Q, Pei L, Zhao Z, Zhuang X, Qin H. Glycoprotein α-Subunit of Glucosidase II (GIIα) is a novel prognostic biomarker correlated with unfavorable outcome of urothelial carcinoma. BMC Cancer 2022; 22:817. [PMID: 35879690 PMCID: PMC9316353 DOI: 10.1186/s12885-022-09884-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Urothelial carcinoma (UC) is among the most prevalent malignancies. The muscle-invasive bladder cancer (MIBC) shows an invasive feature and has poor prognosis, while the non-muscle invasive bladder cancer (NMIBC) shows a better prognosis as compared with the MIBC. However, a significant proportion (10%–30%) of NMIBC cases progress to MIBC. Identification of efficient biomarkers for the prediction of the course of UC remains challenging nowadays. Recently, there is an emerging study showed that post-translational modifications (PTMs) by glycosylation is an important process correlated with tumor angiogenesis, invasion and metastasis. Herein, we reported a data-driven discovery and experimental validation of GANAB, a key regulator of glycosylation, as a novel prognostic marker in UC. Methods In the present study, we conducted immunohistochemistry (IHC) assay to evaluate the correlation between the expression levels of GANAB protein and the prognosis of UC in our cohort of 107 samples using whole slide image (WSI) analysis. In vitro experiments using RNAi were also conducted to investigate the biological functions of GANAB in UC cell lines. Results We observed that positive GANAB protein expression was significantly correlated with poor prognosis of UC in our cohort, with p-value of 0.0017 in Log-rank test. Notably, tumor cells at the invasive front of the tumor margin showed stronger GANAB expression than the tumor cells inside the tumor body in UCs. We further validated that the elevated expression levels of GANAB were significantly correlated with high grade tumors (p-values of 1.72 × 10–10), advanced stages (6.47 × 10–6), and elevated in luminal molecular subtypes. Moreover, knocking-down GANAB using RNAi in UM-UC-3 and T24 cells inhibited cell proliferation and migration in vitro. Knockdown of GANAB resulted in cell cycle arrest at G1 phase. We demonstrated that GANAB mediated HIF1A and ATF6 transcriptional activation in the ER stress signaling, and regulated the gene expression of cell cycle-related transcriptional factors E2F7 and FOXM1. Conclusions The elevated expression of GANAB is a novel indicator of poorer prognosis of UC. Our data suggests that GANAB is not only a new and promising prognostic biomarker for UC, but also may provide important cues for the development of PTM-based therapeutics for UC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09884-8.
Collapse
Affiliation(s)
- Qiongqiong Lin
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhiguang Zhao
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China. .,Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022; 27:molecules27041426. [PMID: 35209215 PMCID: PMC8880037 DOI: 10.3390/molecules27041426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Monruedee Konkchaiyaphum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
10
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|