1
|
Warashina T, Sato A, Hinai H, Shaikhutdinov N, Shagimardanova E, Mori H, Tamaki S, Saito M, Sanada Y, Sasaki Y, Shimada K, Dotsuta Y, Kitagaki T, Maruyama S, Gusev O, Narumi I, Kurokawa K, Morita T, Ebisuzaki T, Nishimura A, Koma Y, Kanai A. Microbiome analysis of the restricted bacteria in radioactive element-containing water at the Fukushima Daiichi Nuclear Power Station. Appl Environ Microbiol 2024; 90:e0211323. [PMID: 38470121 PMCID: PMC11022576 DOI: 10.1128/aem.02113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 109 Bq137Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter, a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans, the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus, a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts. IMPORTANCE In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion.
Collapse
Affiliation(s)
- Tomoro Warashina
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | - Nurislam Shaikhutdinov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, Russia
| | | | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | | | | | | | | | - Shigenori Maruyama
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
- Intractable Disease Research Center, School of Medicine, Juntendo University, Tokyo, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
| | | | - Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | | | | | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
2
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Aureli L, Coleine C, Delgado-Baquerizo M, Ahren D, Cemmi A, Di Sarcina I, Onofri S, Selbmann L. Geography and environmental pressure are predictive of class-specific radioresistance in black fungi. Environ Microbiol 2023; 25:2931-2942. [PMID: 37775957 DOI: 10.1111/1462-2920.16510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Black fungi are among the most resistant organisms to ionizing radiation on Earth. However, our current knowledge is based on studies on a few isolates, while the overall radioresistance limits across this microbial group and the relationship with local environmental conditions remain largely undetermined. To address this knowledge gap, we assessed the survival of 101 strains of black fungi isolated across a worldwide spatial distribution to gamma radiation doses up to 100 kGy. We found that intra and inter-specific taxonomy, UV radiation, and precipitation levels primarily influence the radioresistance in black fungi. Altogether, this study provides insights into the adaptive mechanisms of black fungi to extreme environments and highlights the role of local adaptation in shaping the survival capabilities of these extreme-tolerant organisms.
Collapse
Affiliation(s)
- Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Biology, Lund University, Lund, Sweden
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Dag Ahren
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden
| | - Alessia Cemmi
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa, Italy
| |
Collapse
|
4
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
5
|
Rahman Z, Thomas L, Chetri SPK, Bodhankar S, Kumar V, Naidu R. A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59163-59193. [PMID: 37046169 DOI: 10.1007/s11356-023-26624-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Siva P K Chetri
- Department of Botany, Dimoria College, Gauhati University, Guwahati, Assam, India
| | - Shrey Bodhankar
- Department of Agriculture Microbiology, School of Agriculture Sciences, Anurag University, Hyderabad, Telangana, India
| | - Vikas Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
6
|
Use of Gamma Radiation for the Genetic Improvement of Underutilized Plant Varieties. PLANTS 2022; 11:plants11091161. [PMID: 35567162 PMCID: PMC9102721 DOI: 10.3390/plants11091161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Agricultural biodiversity includes many species that have biological variants (natives, ecotypes, races, morphotypes). Their use is restricted to local areas because they do not fulfill the commercial requirements; however, it is well documented that these species are a source of metabolites, proteins, enzymes, and genes. Rescuing and harnessing them through traditional genetic breeding is time-consuming and expensive. Inducing mutagenesis may be a short-time option for its genetic improvement. A review of outstanding research was carried out, in order to become familiar with gene breeding using gamma radiation and its relevance to obtain outstanding agronomic characteristics for underutilized species. An approach was made to the global panorama of the application of gamma radiation in different conventional crop species and in vitro cultivated species, in order to obtain secondary metabolites, as well as molecular tools used for mutation screening. The varied effects of gamma radiation are essentially the result of the individual responses and phenotypic plasticity of each organism. However, even implicit chance can be reduced with specific genetic breeding, environmental adaptation, or conservation objectives.
Collapse
|
7
|
Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. mBio 2022; 13:e0339421. [PMID: 35012337 PMCID: PMC8749422 DOI: 10.1128/mbio.03394-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.
Collapse
|
8
|
Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. A small RNA regulates pprM, a modulator of pleiotropic proteins promoting DNA repair, in Deinococcus radiodurans under ionizing radiation. Sci Rep 2021; 11:12949. [PMID: 34155239 PMCID: PMC8217566 DOI: 10.1038/s41598-021-91335-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip Sweet
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Gabriela Franco
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Respina Vaezian
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rok Tkavc
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia M Contreras
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Experimental evolution of extremophile resistance to ionizing radiation. Trends Genet 2021; 37:830-845. [PMID: 34088512 DOI: 10.1016/j.tig.2021.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.
Collapse
|
10
|
Martínez-Ávila L, Peidro-Guzmán H, Pérez-Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, Gunde-Cimerman N, Batista-García RA. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116358. [PMID: 33385892 DOI: 10.1016/j.envpol.2020.116358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
Collapse
Affiliation(s)
- Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Arline Fernández-Silva
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Han R, Fang J, Jiang J, Gaidamakova EK, Tkavc R, Daly MJ, Contreras LM. Signal Recognition Particle RNA Contributes to Oxidative Stress Response in Deinococcus radiodurans by Modulating Catalase Localization. Front Microbiol 2020; 11:613571. [PMID: 33391243 PMCID: PMC7775534 DOI: 10.3389/fmicb.2020.613571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
The proper functioning of many proteins requires their transport to the correct cellular compartment or their secretion. Signal recognition particle (SRP) is a major protein transport pathway responsible for the co-translational movement of integral membrane proteins as well as periplasmic proteins. Deinococcus radiodurans is a ubiquitous bacterium that expresses a complex phenotype of extreme oxidative stress resistance, which depends on proteins involved in DNA repair, metabolism, gene regulation, and antioxidant defense. These proteins are located extracellularly or subcellularly, but the molecular mechanism of protein localization in D. radiodurans to manage oxidative stress response remains unexplored. In this study, we characterized the SRP complex in D. radiodurans R1 and showed that the knockdown (KD) of the SRP RNA (Qpr6) reduced bacterial survival under hydrogen peroxide and growth under chronic ionizing radiation. Through LC-mass spectrometry (MS/MS) analysis, we detected 162 proteins in the periplasm of wild-type D. radiodurans, of which the transport of 65 of these proteins to the periplasm was significantly reduced in the Qpr6 KD strain. Through Western blotting, we further demonstrated the localization of the catalases in D. radiodurans, DR_1998 (KatE1) and DR_A0259 (KatE2), in both the cytoplasm and periplasm, respectively, and showed that the accumulation of KatE1 and KatE2 in the periplasm was reduced in the SRP-defective strains. Collectively, this study establishes the importance of the SRP pathway in the survival and the transport of antioxidant proteins in D. radiodurans under oxidative stress.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Elena K Gaidamakova
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Rok Tkavc
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Uniformed Services University of the Health Sciences, Department of Microbiology and Immunology, Bethesda, MD, United States
| | - Michael J Daly
- Uniformed Services University of the Health Sciences, Department of Pathology, Bethesda, MD, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Bruckbauer ST, Martin J, Minkoff BB, Veling MT, Lancaster I, Liu J, Trimarco JD, Bushnell B, Lipzen A, Wood EA, Sussman MR, Pennacchio C, Cox MM. Physiology of Highly Radioresistant Escherichia coli After Experimental Evolution for 100 Cycles of Selection. Front Microbiol 2020; 11:582590. [PMID: 33072055 PMCID: PMC7536353 DOI: 10.3389/fmicb.2020.582590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Ionizing radiation (IR) is lethal to most organisms at high doses, damaging every cellular macromolecule via induction of reactive oxygen species (ROS). Utilizing experimental evolution and continuing previous work, we have generated the most IR-resistant Escherichia coli populations developed to date. After 100 cycles of selection, the dose required to kill 99% the four replicate populations (IR9-100, IR10-100, IR11-100, and IR12-100) has increased from 750 Gy to approximately 3,000 Gy. Fitness trade-offs, specialization, and clonal interference are evident. Long-lived competing sub-populations are present in three of the four lineages. In IR9, one lineage accumulates the heme precursor, porphyrin, leading to generation of yellow-brown colonies. Major genomic alterations are present. IR9 and IR10 exhibit major deletions and/or duplications proximal to the chromosome replication terminus. Contributions to IR resistance have expanded beyond the alterations in DNA repair systems documented previously. Variants of proteins involved in ATP synthesis (AtpA), iron-sulfur cluster biogenesis (SufD) and cadaverine synthesis (CadA) each contribute to IR resistance in IR9-100. Major genomic and physiological changes are emerging. An isolate from IR10 exhibits protein protection from ROS similar to the extremely radiation resistant bacterium Deinococcus radiodurans, without evident changes in cellular metal homeostasis. Selection is continuing with no limit to IR resistance in evidence as our E. coli populations approach levels of IR resistance typical of D. radiodurans.
Collapse
Affiliation(s)
- Steven T Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Joel Martin
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Benjamin B Minkoff
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.,Center for Genomic Science Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mike T Veling
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Illissa Lancaster
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph D Trimarco
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anna Lipzen
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.,Center for Genomic Science Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Marušić K, Klarić MŠ, Sinčić L, Pucić I, Mihaljević B. Combined effects of gamma-irradiation, dose rate and mycobiota activity on cultural heritage – Study on model paper. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|