1
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Haavisto V, Landry Z, Pontrelli S. High-throughput profiling of metabolic responses to exogenous nutrients in Synechocystis sp. PCC 6803. mSystems 2024; 9:e0022724. [PMID: 38534128 PMCID: PMC11019784 DOI: 10.1128/msystems.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.
Collapse
Affiliation(s)
- Vilhelmiina Haavisto
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Zachary Landry
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Ito S, Watanabe A, Osanai T. Regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2024; 194:945-957. [PMID: 37936332 DOI: 10.1093/plphys/kiad580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Cyanobacteria have been promoted as a biomass resource that can contribute to carbon neutrality. Synechocystis sp. PCC 6803 is a model cyanobacterium that is widely used in various studies. NADP+ and NAD+ are electron receptors involved in energy metabolism. The NADP+/NAD+ ratio in Synechocystis sp. PCC 6803 is markedly higher than that in the heterotrophic bacterium Escherichia coli. In Synechocystis sp. PCC 6803, NADP+ primarily functions as an electron receptor during the light reaction of photosynthesis, and NADP+ biosynthesis is essential for photoautotrophic growth. Generally, the regulatory enzyme of NADP+ biosynthesis is NAD kinase, which catalyzes the phosphorylation of NAD+. However, a previous study suggested that the regulation of another enzyme contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. L-Aspartate oxidase is the first enzyme in NAD(P)+ biosynthesis. In this study, we biochemically characterized Synechocystis sp. PCC 6803 L-aspartate oxidase and determined the phenotype of a Synechocystis sp. PCC 6803 mutant overexpressing L-aspartate oxidase. The catalytic efficiency of L-aspartate oxidase from Synechocystis sp. PCC 6803 was lower than that of L-aspartate oxidases and NAD kinases from other organisms. L-Aspartate oxidase activity was affected by different metabolites such as NADP+ and ATP. The L-aspartate oxidase-overexpressing strain grew faster than the wild-type strain under photoautotrophic conditions. The L-aspartate oxidase-overexpressing strain accumulated NADP+ under photoautotrophic conditions. These results indicate that the regulation of L-aspartate oxidase contributes to NADP+ biosynthesis in Synechocystis sp. PCC 6803 under photoautotrophic conditions. These findings provide insight into the regulatory mechanism of cyanobacterial NADP+ biosynthesis.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Yamane M, Osanai T. Nondiazotrophic cyanobacteria metabolic engineering for succinate and lactate production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Malic Enzyme, not Malate Dehydrogenase, Mainly Oxidizes Malate That Originates from the Tricarboxylic Acid Cycle in Cyanobacteria. mBio 2022; 13:e0218722. [PMID: 36314837 PMCID: PMC9765476 DOI: 10.1128/mbio.02187-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (Synechocystis 6803) has been used in various studies on the cyanobacterial TCA cycle. Malate oxidation in the TCA cycle is generally catalyzed by malate dehydrogenase (MDH). However, Synechocystis 6803 MDH (SyMDH) is less active than MDHs from other organisms. Additionally, SyMDH uses only NAD+ as a coenzyme, unlike other TCA cycle enzymes from Synechocystis 6803 that use NADP+. These results suggest that MDH rarely catalyzes malate oxidation in the cyanobacterial TCA cycle. Another enzyme catalyzing malate oxidation is malic enzyme (ME). We clarified which enzyme oxidizes malate that originates from the cyanobacterial TCA cycle using analyses focusing on ME and MDH. In contrast to SyMDH, Synechocystis 6803 ME (SyME) showed high activity when NADP+ was used as a coenzyme. Unlike the Synechocystis 6803 mutant lacking SyMDH, the mutant lacking SyME accumulated malate in the cells. ME was more highly preserved in the cyanobacterial genomes than MDH. These results indicate that ME mainly oxidizes malate that originates from the cyanobacterial TCA cycle (named the ME-dependent TCA cycle). The ME-dependent TCA cycle generates NADPH, not NADH. This is consistent with previous reports that NADPH is an electron carrier in the cyanobacterial respiratory chain. Our finding suggests the diversity of enzymes involved in the TCA cycle in the organisms, and analyses such as those performed in this study are necessary to determine the enzymes. IMPORTANCE Oxygenic photoautotrophic bacteria, namely, cyanobacteria, have the tricarboxylic acid (TCA) cycle. Recently, metabolite production using the cyanobacterial TCA cycle has been well studied. To enhance the production volume of metabolites, understanding the biochemical properties of the cyanobacterial TCA cycle is required. Generally, malate dehydrogenase oxidizes malate in the TCA cycle. However, cyanobacterial malate dehydrogenase shows low activity and does not use NADP+ as a coenzyme, unlike other cyanobacterial TCA cycle enzymes. Our analyses revealed that another malate oxidation enzyme, the malic enzyme, mainly oxidizes malate that originates from the cyanobacterial TCA cycle. These findings provide better insights into metabolite production using the cyanobacterial TCA cycle. Furthermore, our findings suggest that the enzymes related to the TCA cycle vary from organism to organism and emphasize the importance of analyses to identify the enzymes such as those performed in this study.
Collapse
|
6
|
Hidese R, Matsuda M, Kajikawa M, Osanai T, Kondo A, Hasunuma T. Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO 2-Derived Glycogen in the Cyanobacterium Synechocystis sp. PCC6803. ACS Synth Biol 2022; 11:4054-4064. [PMID: 36445137 DOI: 10.1021/acssynbio.2c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The four-carbon (C4) dicarboxylic acids, fumarate, malate, and succinate, are the most valuable targets that must be exploited for CO2-based chemical production in the move to a sustainable low-carbon future. Cyanobacteria excrete high amounts of C4 dicarboxylic acids through glycogen fermentation in a dark anoxic environment. The enhancement of metabolic flux in the reductive TCA branch in the Cyanobacterium Synechocystis sp. PCC6803 is a key issue in the C4 dicarboxylic acid production. To improve metabolic flux through the anaplerotic pathway, we have created the recombinant strain PCCK, which expresses foreign ATP-forming phosphoenolpyruvate carboxykinase (PEPck) concurrent with intrinsic phosphoenolpyruvate carboxylase (Ppc) overexpression. Expression of PEPck concurrent with Ppc led to an increase in C4 dicarboxylic acids by autofermentation. Metabolome analysis revealed that PEPck contributed to an increase in carbon flux from hexose and pentose phosphates into the TCA reductive branch. To enhance the metabolic flux in the reductive TCA branch, we examined the effect of corn-steep liquor (CSL) as a nutritional supplement on C4 dicarboxylic acid production. Surprisingly, the addition of sterilized CSL enhanced the malate production in the PCCK strain. Thereafter, the malate and fumarate excreted by the PCCK strain are converted into succinate by the CSL-settling microorganisms. Finally, high-density cultivation of cells lacking the acetate kinase gene showed the highest production of malate and fumarate (3.2 and 2.4 g/L with sterilized CSL) and succinate (5.7 g/L with non-sterile CSL) after 72 h cultivation. The present microbial community engineering is useful for succinate production by one-pot fermentation under dark anoxic conditions.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mamiko Kajikawa
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akihiko Kondo
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Katayama N, Osanai T. Arginine inhibition of the argininosuccinate lyases is conserved among three orders in cyanobacteria. PLANT MOLECULAR BIOLOGY 2022; 110:13-22. [PMID: 35583703 DOI: 10.1007/s11103-022-01280-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
This study revealed different catalytic efficiencies of cyanobacterial argininosuccinate lyases in non-nitrogen-fixing and nitrogen-fixing cyanobacteria, demonstrating that L-arginine inhibition of L-argininosuccinate lyase is conserved among enzymes of three cyanobacterial orders. Arginine is a nitrogen-rich amino acid that uses a nitrogen reservoir, and its biosynthesis is strictly controlled by feedback inhibition. Argininosuccinate lyase (EC 4.3.2.1) is the final enzyme in arginine biosynthesis that catalyzes the conversion of argininosuccinate to L-arginine and fumarate. Cyanobacteria synthesize intracellular cyanophycin, which is a nitrogen reservoir composed of aspartate and arginine. Arginine is an important source of nitrogen for cyanobacteria. We expressed and purified argininosuccinate lyases, ArgHs, from Synechocystis sp. PCC 6803, Nostoc sp. PCC 7120, and Arthrospira platensis NIES-39. The catalytic efficiency of the Nostoc sp. PCC 7120 ArgH was 2.8-fold higher than those of Synechocystis sp. PCC 6803 and Arthrospira platensis NIES-39. All three ArgHs were inhibited in the presence of arginine, and their inhibitory effects were lowered at pH 7.0, compared to those at pH 8.0. These results indicate that arginine inhibition of ArgH is widely conserved among the three cyanobacterial orders. The current results demonstrate the conserved regulation of enzymes in the cyanobacterial aspartase/fumarase superfamily.
Collapse
Affiliation(s)
- Noriaki Katayama
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
8
|
Biochemical elucidation of citrate accumulation in Synechocystis sp. PCC 6803 via kinetic analysis of aconitase. Sci Rep 2021; 11:17131. [PMID: 34429477 PMCID: PMC8385029 DOI: 10.1038/s41598-021-96432-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
A unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses a unique tricarboxylic acid (TCA) cycle, wherein the intracellular citrate levels are approximately 1.5–10 times higher than the levels of other TCA cycle metabolite. Aconitase catalyses the reversible isomerisation of citrate and isocitrate. Herein, we biochemically analysed Synechocystis sp. PCC 6803 aconitase (SyAcnB), using citrate and isocitrate as the substrates. We observed that the activity of SyAcnB for citrate was highest at pH 7.7 and 45 °C and for isocitrate at pH 8.0 and 53 °C. The Km value of SyAcnB for citrate was higher than that for isocitrate under the same conditions. The Km value of SyAcnB for isocitrate was 3.6-fold higher than the reported Km values of isocitrate dehydrogenase for isocitrate. Therefore, we suggest that citrate accumulation depends on the enzyme kinetics of SyAcnB, and 2-oxoglutarate production depends on the chemical equilibrium in this cyanobacterium.
Collapse
|
9
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
10
|
Iijima H, Watanabe A, Sukigara H, Iwazumi K, Shirai T, Kondo A, Osanai T. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab Eng 2021; 65:88-98. [PMID: 33722652 DOI: 10.1016/j.ymben.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Succinate, fumarate, and malate are valuable four-carbon (C4) dicarboxylic acids used for producing plastics and food additives. C4 dicarboxylic acid is biologically produced by heterotrophic organisms. However, current biological production requires organic carbon sources that compete with food uses. Herein, we report C4 dicarboxylic acid production from CO2 using metabolically engineered Synechocystis sp. PCC 6803. Overexpression of citH, encoding malate dehydrogenase (MDH), resulted in the enhanced production of succinate, fumarate, and malate. citH overexpression increased the reductive branch of the open cyanobacterial tricarboxylic acid (TCA) cycle flux. Furthermore, product stripping by medium exchanges increased the C4 dicarboxylic acid levels; product inhibition and acidification of the media were the limiting factors for succinate production. Our results demonstrate that MDH is a key regulator that activates the reductive branch of the open cyanobacterial TCA cycle. The study findings suggest that cyanobacteria can act as a biocatalyst for converting CO2 to carboxylic acids.
Collapse
Affiliation(s)
- Hiroko Iijima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Haruna Sukigara
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
11
|
Ito S, Hakamada T, Ogino T, Osanai T. Reconstitution of oxaloacetate metabolism in the tricarboxylic acid cycle in Synechocystis sp. PCC 6803: discovery of important factors that directly affect the conversion of oxaloacetate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1449-1458. [PMID: 33280178 DOI: 10.1111/tpj.15120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the most important metabolic pathways in nature. Oxygenic photoautotrophic bacteria, cyanobacteria, have an unusual TCA cycle. The TCA cycle in cyanobacteria contains two unique enzymes that are not part of the TCA cycle in other organisms. In recent years, sustainable metabolite production from carbon dioxide using cyanobacteria has been looked at as a means to reduce the environmental burden of this gas. Among cyanobacteria, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) is an optimal host for sustainable metabolite production. Recently, metabolite production using the TCA cycle in Synechocystis 6803 has been carried out. Previous studies revealed that the branch point of the oxidative and reductive TCA cycles, oxaloacetate metabolism, plays a key role in metabolite production. However, the biochemical mechanisms regulating oxaloacetate metabolism in Synechocystis 6803 are poorly understood. Concentrations of oxaloacetate in Synechocystis 6803 are extremely low, such that in vivo analysis of oxaloacetate metabolism does not seem realistic. Therefore, using purified enzymes, we reconstituted oxaloacetate metabolism in Synechocystis 6803 in vitro to reveal the regulatory mechanisms involved. Reconstitution of oxaloacetate metabolism revealed that pH, Mg2+ and phosphoenolpyruvate are important factors affecting the conversion of oxaloacetate in the TCA cycle. Biochemical analyses of the enzymes involved in oxaloacetate metabolism in this and previous studies revealed the biochemical mechanisms underlying the effects of these factors on oxaloacetate conversion. In addition, we clarified the function of two l-malate dehydrogenase isozymes in oxaloacetate metabolism. These findings serve as a basis for various applications of the cyanobacterial TCA cycle.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takumi Hakamada
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tatsumi Ogino
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
12
|
Cardoso IA, de Souza AKL, Burgess AMG, Chalmers IW, Hoffmann KF, Nonato MC. Characterization of class II fumarase from Schistosoma mansoni provides the molecular basis for selective inhibition. Int J Biol Macromol 2021; 175:406-421. [PMID: 33549669 DOI: 10.1016/j.ijbiomac.2021.01.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is a neglected tropical disease that affects more than 250 million people worldwide. The only drug available for its treatment undergoes first-pass hepatic metabolism and is not capable of preventing reinfection, which makes the search of new therapies urgently needed. Due to the essential role of fumarases in metabolism, these enzymes represent potential targets for developing novel schistosomiasis treatments. Here, we evaluate the expression profiles for class I and class II fumarases from Schistosoma mansoni (SmFHI and SmFHII, respectively), and report the complete characterization of SmFHII. The first SmFHII structure in complex with L-malate was determined at 1.85 Å resolution. The significant thermoshift observed for SmFHII in the presence of identified ligands makes the differential scanning fluorimetry an adequate technique for ligand screening. A complete kinetic characterization of SmFHII was performed, and comparison with the human fumarase (HsFH) revealed differences regarding the turnover number (kcat). Structural characterization allowed us to identify differences between SmFHII and HsFH that could be explored to design new selective inhibitors. This work represents the very first step towards validate the fumarases as drug targets to treat schistosomiasis. Our results provide the structural basis to rational search for selective ligands.
Collapse
Affiliation(s)
- Iara Aimê Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Kusumota Luiz de Souza
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Adam Muslem George Burgess
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Iain Wyllie Chalmers
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Karl Francis Hoffmann
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Unconventional biochemical regulation of the oxidative pentose phosphate pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Biochem J 2020; 477:1309-1321. [PMID: 32227111 DOI: 10.1042/bcj20200038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Abstract
Metabolite production from carbon dioxide using sugar catabolism in cyanobacteria has been in the spotlight recently. Synechocystis sp. PCC 6803 (Synechocystis 6803) is the most studied cyanobacterium for metabolite production. Previous in vivo analyses revealed that the oxidative pentose phosphate (OPP) pathway is at the core of sugar catabolism in Synechocystis 6803. However, the biochemical regulation of the OPP pathway enzymes in Synechocystis 6803 remains unknown. Therefore, we characterized a key enzyme of the OPP pathway, glucose-6-phosphate dehydrogenase (G6PDH), and related enzymes from Synechocystis 6803. Synechocystis 6803 G6PDH was inhibited by citrate in the oxidative tricarboxylic acid (TCA) cycle. Citrate has not been reported as an inhibitor of G6PDH before. Similarly, 6-phosphogluconate dehydrogenase, the other enzyme from Synechocystis 6803 that catalyzes the NADPH-generating reaction in the OPP pathway, was inhibited by citrate. To understand the physiological significance of this inhibition, we characterized succinic semialdehyde dehydrogenase (SSADH) from Synechocystis 6803 (SySSADH), which catalyzes one of the NAD(P)H generating reactions in the oxidative TCA cycle. Similar to isocitrate dehydrogenase from Synechocystis 6803, SySSADH specifically catalyzed the NADPH-generating reaction and was not inhibited by citrate. The activity of SySSADH was lower than that of other bacterial SSADHs. Previous and this studies revealed that unlike the OPP pathway, the oxidative TCA cycle is a pathway with low efficiency in NADPH generation in Synechocystis 6803. It has, thus, been suggested that to avoid NADPH overproduction, the OPP pathway dehydrogenase activity is repressed when the flow of the oxidative TCA cycle increases in Synechocystis 6803.
Collapse
|
14
|
Ito S, Iwazumi K, Sukigara H, Osanai T. Fumarase From Cyanidioschyzon merolae Stably Shows High Catalytic Activity for Fumarate Hydration Under High Temperature Conditions. Front Microbiol 2020; 11:2190. [PMID: 33042040 PMCID: PMC7525151 DOI: 10.3389/fmicb.2020.560894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Fumarases (Fums) catalyze the reversible reaction converting fumarate to l-malate. There are two kinds of Fums: Class І and ІІ. Thermostable Class ІІ Fums, from mesophilic microorganisms, are utilized for industrial l-malate production. However, the low thermostability of these Fums is a limitation in industrial l-malate production. Therefore, an alternative Class ІІ Fum that shows high activity and thermostability is required to overcome this drawback. Thermophilic microalgae and cyanobacteria can use carbon dioxide as a carbon source and are easy to cultivate. Among them, Cyanidioschyzon merolae and Thermosynechococcus elongatus are model organisms to study cell biology and structural biology, respectively. We biochemically analyzed Class ІІ Fums from C. merolae (CmFUM) and T. elongatus (TeFum). Both CmFUM and TeFum preferentially catalyzed fumarate hydration. The catalytic activity of CmFUM for fumarate hydration in the optimum conditions (52°C and pH 7.5) is higher compared to those of Class ІІ Fums from other organisms and TeFum. Thermostability tests of CmFUM revealed that CmFUM showed higher thermostability than those of Class ІІ Fums from other microorganisms. The yield of l-malate obtained from fumarate hydration catalyzed by CmFUM was 75-81%. In summary, CmFum has suitable properties for efficient l-malate production.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|