1
|
Fazzari C, Macchi R, Kunimasa Y, Ressam C, Casanova R, Chavet P, Nicol C. Muscle synergies inherent in simulated hypogravity running reveal flexible but not unconstrained locomotor control. Sci Rep 2024; 14:2707. [PMID: 38302569 PMCID: PMC10834966 DOI: 10.1038/s41598-023-50076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.
Collapse
Affiliation(s)
| | - Robin Macchi
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | | | - Camélia Ressam
- NeuroSpin, UMR CEA/CNRS 9027, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
2
|
Guillaud E, Leconte V, Doat E, Guehl D, Cazalets JR. Sensorimotor adaptation of locomotor synergies to gravitational constraint. NPJ Microgravity 2024; 10:5. [PMID: 38212311 PMCID: PMC10784505 DOI: 10.1038/s41526-024-00350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
This study investigates the impact of gravity on lower limb muscle coordination during pedaling. It explores how pedaling behaviors, kinematics, and muscle activation patterns dynamically adapts to changes in gravity and resistance levels. The experiment was conducted in parabolic flights, simulating microgravity, hypergravity (1.8 g), and normogravity conditions. Participants pedaled on an ergometer with varying resistances. The goal was to identify potential changes in muscle synergies and activation strategies under different gravitational contexts. Results indicate that pedaling cadence adjusted naturally in response to both gravity and resistance changes. Cadence increased with higher gravity and decreased with higher resistance levels. Muscular activities were characterized by two synergies representing pull and push phases of pedaling. The timing of synergy activation was influenced by gravity, with a delay in activation observed in microgravity compared to other conditions. Despite these changes, the velocity profile of pedaling remained stable across gravity conditions. The findings strongly suggest that the CNS dynamically manages the shift in body weight by finely tuning muscular coordination, thereby ensuring the maintenance of a stable motor output. Furthermore, electromyography analysis suggest that neuromuscular discharge frequencies were not affected by gravity changes. This implies that the types of muscle fibers recruited during exercise in modified gravity are similar to those used in normogravity. This research has contributed to a better understanding of how the human locomotor system responds to varying gravitational conditions, shedding light on the potential mechanisms underlying astronauts' gait changes upon returning from space missions.
Collapse
Affiliation(s)
- Etienne Guillaud
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Vincent Leconte
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Emilie Doat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Dominique Guehl
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | |
Collapse
|
3
|
Hagio S, Ishihara A, Terada M, Tanabe H, Kibushi B, Higashibata A, Yamada S, Furukawa S, Mukai C, Ishioka N, Kouzaki M. Muscle synergies of multi-directional postural control in astronauts on Earth after a long-term stay in space. J Neurophysiol 2022; 127:1230-1239. [PMID: 35353615 DOI: 10.1152/jn.00232.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Movements of the human biological system have adapted to the physical environment under the 1-g gravitational force on Earth. However, the effects of microgravity in space on the underlying functional neuromuscular control behaviors remain poorly understood. Here, we aimed to elucidate the effects of prolonged exposure to a microgravity environment on the functional coordination of multiple muscle activities. The activities of 16 lower limb muscles of 5 astronauts who stayed in space for at least 3 months were recorded while they maintained multidirectional postural control during bipedal standing. The coordinated activation patterns of groups of muscles, i.e., muscle synergies, were estimated from the muscle activation datasets using a factorization algorithm. The experiments were repeated a total of 5 times for each astronaut, once before and 4 times after spaceflight. The compositions of muscle synergies were altered, with a constant number of synergies, after long-term exposure to microgravity, and the extent of the changes was correlated with the severity of the deficits in postural stability. Furthermore, the muscle synergies extracted 3 months after the return were similar in their activation profile but not in their muscle composition compared with those extracted in the preflight condition. These results suggest that the modularity in the neuromuscular system became reorganized to adapt to the microgravity environment and then possibly reoptimized to the new sensorimotor environment after the astronauts were re-exposed to a gravitational force. It is expected that muscle synergies can be used as physiological markers of the status of astronauts with gravity-dependent change.
Collapse
Affiliation(s)
- Shota Hagio
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Masahiro Terada
- Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| | - Hiroko Tanabe
- Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan
| | - Benio Kibushi
- Faculty of Sport Science, Waseda University, Saitama, Japan
| | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Shin Yamada
- Graduate School of Medicine, Kyorin University, Tokyo, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Chiaki Mukai
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Hagio S, Nakazato M, Kouzaki M. Modulation of spatial and temporal modules in lower limb muscle activations during walking with simulated reduced gravity. Sci Rep 2021; 11:14749. [PMID: 34285306 PMCID: PMC8292403 DOI: 10.1038/s41598-021-94201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Gravity plays a crucial role in shaping patterned locomotor output to maintain dynamic stability during locomotion. The present study aimed to clarify the gravity-dependent regulation of modules that organize multiple muscle activities during walking in humans. Participants walked on a treadmill at seven speeds (1-6 km h-1 and a subject- and gravity-specific speed determined by the Froude number (Fr) corresponding to 0.25) while their body weight was partially supported by a lift to simulate walking with five levels of gravity conditions from 0.07 to 1 g. Modules, i.e., muscle-weighting vectors (spatial modules) and phase-dependent activation coefficients (temporal modules), were extracted from 12 lower-limb electromyographic (EMG) activities in each gravity (Fr ~ 0.25) using nonnegative matrix factorization. Additionally, a tensor decomposition model was fit to the EMG data to quantify variables depending on the gravity conditions and walking speed with prescribed spatial and temporal modules. The results demonstrated that muscle activity could be explained by four modules from 1 to 0.16 g and three modules at 0.07 g, and the modules were shared for both spatial and temporal components among the gravity conditions. The task-dependent variables of the modules acting on the supporting phase linearly decreased with decreasing gravity, whereas that of the module contributing to activation prior to foot contact showed nonlinear U-shaped modulation. Moreover, the profiles of the gravity-dependent modulation changed as a function of walking speed. In conclusion, reduced gravity walking was achieved by regulating the contribution of prescribed spatial and temporal coordination in muscle activities.
Collapse
Affiliation(s)
- Shota Hagio
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Unit of Synergetic Studies for Space, Kyoto University, Kyoto, 606-8502, Japan.
| | - Makoto Nakazato
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Unit of Synergetic Studies for Space, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Pan B, Huang Z, Jin T, Wu J, Zhang Z, Shen Y. Motor Function Assessment of Upper Limb in Stroke Patients. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6621950. [PMID: 33708365 PMCID: PMC7932780 DOI: 10.1155/2021/6621950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022]
Abstract
Background Quantitative assessment of motor function is extremely important for poststroke patients as it can be used to develop personalized treatment strategies. This study aimed to propose an evaluation method for upper limb motor function in stroke patients. Methods Thirty-four stroke survivors and twenty-five age-matched healthy volunteers as the control group were recruited for this study. Inertial sensor data and surface electromyography (sEMG) signals were collected from the upper limb during voluntary upward reaching. Five features included max shoulder joint angle, peak and average speeds, torso balance calculated from inertial sensor data, and muscle synergy similarity extracted from sEMG data by the nonnegative matrix factorization algorithm. Meanwhile, the Fugl-Meyer score of each patient was graded by professional rehabilitation therapist. Results Statistically significant differences were observed among severe, mild-to-moderate, and control group of five features (p ≤ 0.001). The features varied as the level of upper limb motor function changes since these features significantly correlated with the Fugl-Meyer assessment scale (p ≤ 0.001). Moreover, the Bland-Altman method was conducted and showed high consistency between the evaluation method of five features and Fugl-Meyer scale. Therefore, the five features proposed in this paper can quantitatively evaluate the motor function of stroke patients which is very useful in the rehabilitation process.
Collapse
Affiliation(s)
- Bingyu Pan
- School of Sports Engineering, Beijing Sport University, Beijing, China
| | - Zhen Huang
- Rehabilitation Department, Peking University First Hospital, Beijing, China
| | - Tingting Jin
- Rehabilitation Department, Peking University First Hospital, Beijing, China
| | - Jiankang Wu
- Sensor Network and Application Research Centre, School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Zhang
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Yanfei Shen
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
6
|
Mileti I, Serra A, Wolf N, Munoz-Martel V, Ekizos A, Palermo E, Arampatzis A, Santuz A. Muscle Activation Patterns Are More Constrained and Regular in Treadmill Than in Overground Human Locomotion. Front Bioeng Biotechnol 2020; 8:581619. [PMID: 33195143 PMCID: PMC7644811 DOI: 10.3389/fbioe.2020.581619] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.
Collapse
Affiliation(s)
- Ilaria Mileti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Aurora Serra
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Nerses Wolf
- Department of Electrical Engineering and Informatics, Technische Universität Berlin, Berlin, Germany
| | - Victor Munoz-Martel
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Abstract
A return to the Moon, Mars expeditions, and a rise in space tourism will lead to an increasing number of human spaceflights. The ‘Gravitational biology and space medicine’ Collection focuses on the challenges to the health of humans in space during long-term space missions and the physiological changes during short-term altered gravity conditions, the possible influence of space radiation, available countermeasures and possible applications on Earth. In addition, studies reporting on in vivo changes in space-flown mice were published. Finally, this Collection also brings together articles reporting experiments using cells cultured under conditions of real microgravity on the International Space Station, or exposed in ground-based facilities, in order to study morphological and molecular alterations in different cell types.
Collapse
|