1
|
Shin Y, Prasad R, Das N, Taylor JA, Qin H, Hu W, Hu YY, Fu R, Zhang R, Zhou HX, Cross TA. Mycobacterium tuberculosis CrgA Forms a Dimeric Structure with Its Transmembrane Domain Sandwiched between Cytoplasmic and Periplasmic β-Sheets, Enabling Multiple Interactions with Other Divisome Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627054. [PMID: 39677619 PMCID: PMC11643046 DOI: 10.1101/2024.12.05.627054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
CrgA is a key transmembrane (TM) protein in the cell division process of Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis. While many of the Mtb divisome proteins have been identified, their structures and interactions remain largely unknown. Previous studies of CrgA using oriented-sample solid-state NMR have defined the tilt and rotation of the TM helices, but the cytoplasmic and periplasmic domains and even the oligomeric state were uncharacterized. Here, combining oriented-sample and magic-angle spinning solid-state NMR spectra, we solved the full-length structure of CrgA. The structure features a dimer with a TM domain sandwiched between a cytoplasmic β-sheet and a periplasmic β-sheet. The β-sheets stabilize dimerization, which in turn increases CrgA's ability to participate in multiple protein interactions. Within the membrane, CrgA binds FtsQ, CwsA, PbpA, FtsI, and MmPL3 via its TM helices; in the cytoplasm, Lys23 and Lys25 project outward from the β-sheet to interact with acidic residues of FtsQ and FtsZ. The structural determination of CrgA thus provides significant insights into its roles in recruiting other divisome proteins and stabilizing their complexes for Mtb cell wall synthesis and polar growth.
Collapse
Affiliation(s)
- Yiseul Shin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
| | - Nabanita Das
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Joshua A. Taylor
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Wenhao Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607
| | - Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
2
|
Berkowitz N, MacMillan A, Simmons MB, Shinde U, Purdy GE. Structural modeling and characterization of the Mycobacterium tuberculosis MmpL3 C-terminal domain. FEBS Lett 2024; 598:2734-2747. [PMID: 39198717 PMCID: PMC11560685 DOI: 10.1002/1873-3468.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target. Despite interest in MmpL3, the structural data in the field are incomplete. Utilizing homology modeling, AlphaFold, and biophysical techniques, we characterized the cytoplasmic C-terminal domain (CTD) of MmpL3 to better understand its structure and function. Our in silico models of the MmpL11TB and MmpL3TB CTD reveal notable features including a long unstructured linker that connects the globular domain to the last transmembrane (TM) in each transporter, charged lysine and arginine residues facing the membrane, and a C-terminal alpha helix. Our predicted overall structure enables a better understanding of these transporters.
Collapse
Affiliation(s)
- Naomi Berkowitz
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Allison MacMillan
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Marit B. Simmons
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Ujwal Shinde
- Oregon Health & Science University, Biophysics Core Facility, Portland, OR, 97239, United States
| | - Georgiana E. Purdy
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| |
Collapse
|
3
|
Arejan NH, Czapski DR, Buonomo JA, Boutte CC. MmpL3, Wag31, and PlrA are involved in coordinating polar growth with peptidoglycan metabolism and nutrient availability. J Bacteriol 2024; 206:e0020424. [PMID: 39320104 PMCID: PMC11500546 DOI: 10.1128/jb.00204-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 is responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation and in which the connection between Wag31, PlrA, and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate the synthesis of the different layers of the mycobacterial cell wall in changing conditions. IMPORTANCE This study is performed in Mycobacterium smegmatis, which is used as a model to understand the basic physiology of pathogenic mycobacteria such as Mycobacterium tuberculosis. In this work, we examine the function and regulation of three proteins involved in regulating cell wall elongation in mycobacterial cells, which occurs at the cell tips or poles. We find that Wag31, a regulator of polar elongation, works partly through the regulation of MmpL3, a transporter of cell wall constituents and an important drug target. Our work suggests that, beyond its transport function, MmpL3 has another function in controlling cell wall synthesis broadly in response to stress.
Collapse
Affiliation(s)
| | - Desiree R. Czapski
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Joseph A. Buonomo
- Department of Chemistry and Biochemistry, University of Texas, Arlington, Texas, USA
| | - Cara C. Boutte
- Department of Biology, University of Texas, Arlington, Texas, USA
| |
Collapse
|
4
|
Babii S, Li W, Yang L, Grzegorzewicz AE, Jackson M, Gumbart JC, Zgurskaya HI. Allosteric coupling of substrate binding and proton translocation in MmpL3 transporter from Mycobacterium tuberculosis. mBio 2024; 15:e0218324. [PMID: 39212407 PMCID: PMC11481577 DOI: 10.1128/mbio.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Mycobacterium spp. are very challenging to treat, and multidrug-resistant strains rapidly spread in human populations. Major contributing factors include the unique physiological features of these bacteria, drug efflux, and the low permeability barrier of their outer membrane. Here, we focus on MmpL3 from Mycobacterium tuberculosis, an essential inner membrane transporter of the resistance-nodulation-division superfamily required for the translocation of mycolic acids in the form of trehalose monomycolates (TMM) from the cytoplasm or plasma membrane to the periplasm or outer membrane. The MmpL3-dependent transport of TMM is essential for the growth of M. tuberculosis in vitro, inside macrophages, and in M. tuberculosis-infected mice. MmpL3 is also a validated target for several recently identified anti-mycobacterial agents. In this study, we reconstituted the lipid transport activity of the purified MmpL3 using a two-lipid vesicle system and established the ability of MmpL3 to actively extract phospholipids from the outer leaflet of a lipid bilayer. In contrast, we found that MmpL3 lacks the ability to translocate the same phospholipid substrate across the plasma membrane indicating that it is not an energy-dependent flippase. The lipid extraction activity was modulated by substitutions in critical charged and polar residues of the periplasmic substrate-binding pocket of MmpL3, coupled to the proton transfer activity of MmpL3 and inhibited by a small molecule inhibitor SQ109. Based on the results, we propose a mechanism of allosteric coupling wherein substrate translocation by MmpL3 is coupled to the energy provided by the downhill transfer of protons. The reconstituted activities will facilitate understanding the mechanism of MmpL3-dependent transport of lipids and the discovery of new therapeutic options for Mycobacterium spp. infections.IMPORTANCEMmpL3 from Mycobacterium tuberculosis is an essential transporter involved in the assembly of the mycobacterial outer membrane. It is also an important target in undergoing efforts to discover new anti-tuberculosis drugs effective against multidrug-resistant strains spreading in human populations. The recent breakthrough structural studies uncovered features of MmpL3 that suggested a possible lipid transport mechanism. In this study, we reconstituted and characterized the lipid transport activity of MmpL3 and demonstrated that this activity is blocked by MmpL3 inhibitors and substrate mimics. We further uncovered the mechanism of how the binding of a substrate in the periplasmic domain is communicated to the transmembrane proton relay of MmpL3. The uncovered mechanism and the developed assays provide new opportunities for mechanistic analyses of MmpL3 function and its inhibition.
Collapse
Affiliation(s)
- Svitlana Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna E. Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
5
|
Cioccolo S, Barritt JD, Pollock N, Hall Z, Babuta J, Sridhar P, Just A, Morgner N, Dafforn T, Gould I, Byrne B. The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs. RSC Chem Biol 2024; 5:901-913. [PMID: 39211474 PMCID: PMC11352979 DOI: 10.1039/d4cb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.
Collapse
Affiliation(s)
- Sara Cioccolo
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| | - Naomi Pollock
- School of Biosciences, University of Birmingham Birmingham UK
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London London UK
| | - Julia Babuta
- Division of Systems Medicine, Imperial College London London UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham Birmingham UK
| | - Alicia Just
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, J.W. Goethe-University Frankfurt am Main Germany
| | - Tim Dafforn
- School of Biosciences, University of Birmingham Birmingham UK
| | - Ian Gould
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London Shepherd's Bush London W12 0BZ UK
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London Exhibition Road, South Kensington London SW7 2AZ UK
| |
Collapse
|
6
|
Arejan NH, Czapski DR, Buonomo JA, Boutte CC. MmpL3, Wag31 and PlrA are involved in coordinating polar growth with peptidoglycan metabolism and nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591792. [PMID: 38746181 PMCID: PMC11092516 DOI: 10.1101/2024.04.29.591792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen, and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 are responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism, but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth, but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation, and in which the connection between Wag31, PlrA and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate synthesis of the different layers of the mycobacterial cell wall in changing conditions.
Collapse
Affiliation(s)
| | - Desiree R Czapski
- Department of Chemistry and Biochemistry, University of Texas, Arlington
| | - Joseph A Buonomo
- Department of Chemistry and Biochemistry, University of Texas, Arlington
| | - Cara C Boutte
- Department of Biology, University of Texas, Arlington
| |
Collapse
|
7
|
Choksi H, Carbone J, Paradis NJ, Bennett L, Bui-Linh C, Wu C. Novel Inhibitors to MmpL3 Transporter of Mycobacterium tuberculosis by Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulations. ACS OMEGA 2024; 9:13782-13796. [PMID: 38559933 PMCID: PMC10976370 DOI: 10.1021/acsomega.3c08401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis (Mtb) utilizes mycolic acids for building the mycobacterial cell wall, which is critical in providing defense against external factors and resisting antibiotic action. MmpL3 is a secondary resistance nodulation division transporter that facilitates the coupled transport of mycolic acid precursor into the periplasm using the proton motive force, thus making it an attractive drug target for TB infection. In 2019, X-ray crystal structures of MmpL3 from M. smegmatis were solved with a promising inhibitor SQ109, which showed promise against drug-resistant TB in Phase II clinical trials. Still, there is a pressing need to discover more effective MmpL3 inhibitors to counteract rising antibiotic resistance. In this study, structure-based high-throughput virtual screening combined with molecular dynamics (MD) simulations identified potential novel MmpL3 inhibitors. Approximately 17 million compounds from the ZINC15 database were screened against the SQ109 binding site on the MmpL3 protein using drug property filters and glide XP docking scores. From this, the top nine compounds and the MmpL3-SQ109 crystal complex structure each underwent 2 × 200 ns MD simulations to probe the inhibitor binding energetics to MmpL3. Four of the nine compounds exhibited stable binding properties and favorable drug properties, suggesting these four compounds could be potential novel inhibitors of MmpL3 for M. tuberculosis.
Collapse
Affiliation(s)
| | | | - Nicholas J. Paradis
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Lucas Bennett
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Candice Bui-Linh
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Molecular &
Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
8
|
Couston J, Guo Z, Wang K, Gourdon P, Blaise M. Cryo-EM structure of the trehalose monomycolate transporter, MmpL3, reconstituted into peptidiscs. Curr Res Struct Biol 2023; 6:100109. [PMID: 38034087 PMCID: PMC10682824 DOI: 10.1016/j.crstbi.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Mycobacteria have an atypical thick and waxy cell wall. One of the major building blocks of such mycomembrane is trehalose monomycolate (TMM). TMM is a mycolic acid ester of trehalose that possesses long acyl chains with up to 90 carbon atoms. TMM represents an essential component of mycobacteria and is synthesized in the cytoplasm, and then flipped over the plasma membrane by a specific transporter known as MmpL3. Over the last decade, MmpL3 has emerged as an attractive drug target to combat mycobacterial infections. Recent three-dimensional structures of MmpL3 determined by X-ray crystallography and cryo-EM have increased our understanding of the TMM transport, and the mode of action of inhibiting compounds. These structures were obtained in the presence of detergent and/or in a lipidic environment. In this study, we demonstrate the possibility of obtaining a high-quality cryo-EM structure of MmpL3 without any presence of detergent through the reconstitution of the protein into peptidiscs. The structure was determined at an overall resolution of 3.2 Å and demonstrates that the overall structure of MmpL3 is preserved as compared to previous structures. Further, the study identified a new structural arrangement of the linker that fuses the two subdomains of the transmembrane domain, suggesting the feature may serve a role in the transport process.
Collapse
Affiliation(s)
- Julie Couston
- IRIM, CNRS, University of Montpellier, Montpellier, France
| | - Zongxin Guo
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Mickaël Blaise
- IRIM, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Yang D, Zhang Y, Sow IS, Liang H, El Manssouri N, Gelbcke M, Dong L, Chen G, Dufrasne F, Fontaine V, Li R. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms 2023; 11:2611. [PMID: 37894269 PMCID: PMC10609363 DOI: 10.3390/microorganisms11102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydroxamic acid (HA) derivatives display antibacterial and antifungal activities. HA with various numbers of carbon atoms (C2, C6, C8, C10, C12 and C17), complexed with different metal ions, including Fe(II/III), Ni(II), Cu(II) and Zn(II), were evaluated for their antimycobacterial activities and their anti-biofilm activities. Some derivatives showed antimycobacterial activities, especially in biofilm growth conditions. For example, 20-100 µM of HA10Fe2, HA10FeCl, HA10Fe3, HA10Ni2 or HA10Cu2 inhibited Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium marinum biofilm development. HA10Fe2, HA12Fe2 and HA12FeCl could even attack pre-formed Pseudomonas aeruginosa biofilms at higher concentrations (around 300 µM). The phthiocerol dimycocerosate (PDIM)-deficient Mycobacterium tuberculosis H37Ra was more sensitive to the ion complexes of HA compared to other mycobacterial strains. Furthermore, HA10FeCl could increase the susceptibility of Mycobacterium bovis BCG to vancomycin. Proteomic profiles showed that the potential targets of HA10FeCl were mainly related to mycobacterial stress adaptation, involving cell wall lipid biosynthesis, drug resistance and tolerance and siderophore metabolism. This study provides new insights regarding the antimycobacterial activities of HA and their complexes, especially about their potential anti-biofilm activities.
Collapse
Affiliation(s)
- Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Yanfang Zhang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Naïma El Manssouri
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Rongshan Li
- Department of Nephrology, Shanxi Kidney Disease Institute, The Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan 030001, China
| |
Collapse
|
10
|
Carbone J, Paradis NJ, Bennet L, Alesiani MC, Hausman KR, Wu C. Inhibition Mechanism of Anti-TB Drug SQ109: Allosteric Inhibition of TMM Translocation of Mycobacterium Tuberculosis MmpL3 Transporter. J Chem Inf Model 2023; 63:5356-5374. [PMID: 37589273 PMCID: PMC10466384 DOI: 10.1021/acs.jcim.3c00616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 08/18/2023]
Abstract
The mycolic acid transporter MmpL3 is driven by proton motive forces (PMF) and functions via an antiport mechanism. Although the crystal structures of the Mycobacterium smegmatis MmpL3 transporter alone and in complex with a trehalose monomycolate (TMM) substrate and an antituberculosis drug candidate SQ109 under Phase 2b-3 Clinical Trials are available, no water and no conformational change in MmpL3 were observed in these structures to explain SQ109's inhibition mechanism of proton and TMM transportation. In this study, molecular dynamics simulations of both apo form and inhibitor-bound MmpL3 in an explicit membrane were used to decipher the inhibition mechanism of SQ109. In the apo system, the close-open motion of the two TM domains, likely driven by the proton translocation, drives the close-open motion of the two PD domains, presumably allowing for TMM translocation. In contrast, in the holo system, the two PD domains are locked in a closed state, and the two TM domains are locked in an off pathway wider open state due to the binding of the inhibitor. Consistent with the close-open motion of the two PD domains, TMM entry size changes in the apo system, likely loading and moving the TMM, but does not vary much in the holo system and probably impair the movement of the TMM. Furthermore, we observed that water molecules passed through the central channel of the MmpL3 transporter to the cytoplasmic side in the apo system but not in the holo system, with a mean passing time of ∼135 ns. Because water wires play an essential role in transporting protons, our findings shed light on the importance of PMF in driving the close-open motion of the two TM domains. Interestingly, the key channel residues involved in water passage display considerable overlap with conserved residues within the MmpL protein family, supporting their critical function role.
Collapse
Affiliation(s)
| | | | | | - Mark C. Alesiani
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| | - Katherine R. Hausman
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
11
|
North EJ, Schwartz CP, Zgurskaya HI, Jackson M. Recent advances in mycobacterial membrane protein large 3 inhibitor drug design for mycobacterial infections. Expert Opin Drug Discov 2023; 18:707-724. [PMID: 37226498 PMCID: PMC10330604 DOI: 10.1080/17460441.2023.2218082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Tuberculosis and nontuberculous mycobacterial infections are notoriously difficult to treat, requiring long-courses of intensive multi-drug therapies associated with adverse side effects. To identify better therapeutics, whole cell screens have identified novel pharmacophores, a surprisingly high number of which target an essential lipid transporter known as MmpL3. AREAS COVERED This paper summarizes what is known about MmpL3, its mechanism of lipid transport and therapeutic potential, and provides an overview of the different classes of MmpL3 inhibitors currently under development. It further describes the assays available to study MmpL3 inhibition by these compounds. EXPERT OPINION MmpL3 has emerged as a target of high therapeutic value. Accordingly, several classes of MmpL3 inhibitors are currently under development with one drug candidate (SQ109) having undergone a Phase 2b clinical study. The hydrophobic character of most MmpL3 series identified to date seems to drive antimycobacterial potency resulting in poor bioavailability, which is a significant impediment to their development. There is also a need for more high-throughput and informative assays to elucidate the precise mechanism of action of MmpL3 inhibitors and drive the rational optimization of analogues.
Collapse
Affiliation(s)
- E. Jeffrey North
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chris P. Schwartz
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Thouvenel L, Rech J, Guilhot C, Bouet JY, Chalut C. In vivo imaging of MmpL transporters reveals distinct subcellular locations for export of mycolic acids and non-essential trehalose polyphleates in the mycobacterial outer membrane. Sci Rep 2023; 13:7045. [PMID: 37120636 PMCID: PMC10148836 DOI: 10.1038/s41598-023-34315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
The mycobacterial cell envelope consists of a typical plasma membrane, surrounded by a complex cell wall and a lipid-rich outer membrane. The biogenesis of this multilayer structure is a tightly regulated process requiring the coordinated synthesis and assembly of all its constituents. Mycobacteria grow by polar extension and recent studies showed that cell envelope incorporation of mycolic acids, the major constituent of the cell wall and outer membrane, is coordinated with peptidoglycan biosynthesis at the cell poles. However, there is no information regarding the dynamics of incorporation of other families of outer membrane lipids during cell elongation and division. Here, we establish that the translocation of non-essential trehalose polyphleates (TPP) occurs at different subcellular locations than that of the essential mycolic acids. Using fluorescence microscopy approaches, we investigated the subcellular localization of MmpL3 and MmpL10, respectively involved in the export of mycolic acids and TPP, in growing cells and their colocalization with Wag31, a protein playing a critical role in regulating peptidoglycan biosynthesis in mycobacteria. We found that MmpL3, like Wag31, displays polar localization and preferential accumulation at the old pole whereas MmpL10 is more homogenously distributed in the plasma membrane and slightly accumulates at the new pole. These results led us to propose a model in which insertion of TPP and mycolic acids into the mycomembrane is spatially uncoupled.
Collapse
Affiliation(s)
- Laurie Thouvenel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative de Toulouse, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
13
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Ochsner UA, De Groote MA, Jarvis TC, Liu H, Youmans T, Hoang T, Ribble W, Day J, Li W, Pearce C, Walz A, Panthi CM, Rimal B, Stevens CM, Zgurskaya HI, Jackson M, Ordway D, Gonzalez-Juarrero M, Sun X, Lamichhane G, Mason C. Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3. Tuberculosis (Edinb) 2023; 138:102288. [PMID: 36470124 PMCID: PMC9892229 DOI: 10.1016/j.tube.2022.102288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 μg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.
Collapse
Affiliation(s)
| | | | | | - Hang Liu
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | | | - Teresa Hoang
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Wendy Ribble
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Joshua Day
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Amanda Walz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Chandra M Panthi
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | - Binayak Rimal
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | - Casey M Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, USA
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 200 West Lake Street, Colorado State University, Fort Collins, CO, USA
| | - Xicheng Sun
- Crestone, Inc., 6075 Longbow Dr, Boulder, CO, USA
| | - Gyanu Lamichhane
- Johns Hopkins University, 1550 Orleans Street, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Novel chemical entities inhibiting Mycobacterium tuberculosis growth identified by phenotypic high-throughput screening. Sci Rep 2022; 12:14879. [PMID: 36050506 PMCID: PMC9435431 DOI: 10.1038/s41598-022-19192-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
We performed a high-throughput phenotypic whole cell screen of Mycobacterium tuberculosis against a diverse chemical library of approximately 100,000 compounds from the AbbVie corporate collection and identified 24 chemotypes with anti-tubercular activity. We selected two series for further exploration and conducted structure-activity relationship studies with new analogs for the 4-phenyl piperidines (4PP) and phenylcyclobutane carboxamides (PCB). Strains with mutations in MmpL3 demonstrated resistance to both compound series. We isolated resistant mutants for the two series and found mutations in MmpL3. These data suggest that MmpL3 is the target, or mechanism of resistance for both series.
Collapse
|
16
|
Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2113963119. [PMID: 35858440 PMCID: PMC9335285 DOI: 10.1073/pnas.2113963119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/03/2022] [Indexed: 01/21/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.
Collapse
Affiliation(s)
- Casey M. Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Svitlana O. Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amitkumar N. Pandya
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Yupeng Li
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Robyn Scott
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pooja Hegde
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pavan K. Prathipati
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinchan Liu
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jeffrey North
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
17
|
Mandelic acid-based spirothiazolidinones targeting M. tuberculosis: Synthesis, in vitro and in silico investigations. Bioorg Chem 2022; 121:105688. [DOI: 10.1016/j.bioorg.2022.105688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 01/01/2023]
|
18
|
Gupta KR, Gwin CM, Rahlwes KC, Biegas KJ, Wang C, Park JH, Liu J, Swarts BM, Morita YS, Rego EH. An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria. eLife 2022; 11:80395. [PMID: 36346214 PMCID: PMC9678360 DOI: 10.7554/elife.80395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017). Surprisingly, deletion of a single gene - lamA - leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell - the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA. Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry.
Collapse
Affiliation(s)
- Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Celena M Gwin
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Kathryn C Rahlwes
- Department of Microbiology, University of MassachusettsAmherstUnited States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan UniversityMount PleasantUnited States,Biochemistry, Cell, and Molecular Biology Program, Central Michigan UniversityMount PleasantUnited States
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States,Microbial Sciences Institute, Yale UniversityWest HavenUnited States
| | - Jin Ho Park
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States,Microbial Sciences Institute, Yale UniversityWest HavenUnited States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan UniversityMount PleasantUnited States,Biochemistry, Cell, and Molecular Biology Program, Central Michigan UniversityMount PleasantUnited States
| | - Yasu S Morita
- Department of Microbiology, University of MassachusettsAmherstUnited States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
19
|
Tan YZ, Mancia F. Structure and Function of Mycobacterial Arabinofuranosyltransferases. Subcell Biochem 2022; 99:379-391. [PMID: 36151383 DOI: 10.1007/978-3-031-00793-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mycobacteria genus is responsible for numerous infectious diseases that have afflicted the human race since antiquity-tuberculosis and leprosy in particular. An important contributor to their evolutionary success is their unique cell envelope, which constitutes a quasi-impermeable barrier, protecting the microorganism from external threats, antibiotics included. The arabinofuranosyltransferases are a family of enzymes, unique to the Actinobacteria family that mycobacteria genus belongs to, that are critical to building of this cell envelope. In this chapter, we will analyze available structures of members of the mycobacterial arabinofuranosyltransferase, clarify their function, as well as explore the common themes present amongst this family of enzymes, as revealed by recent research.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
| |
Collapse
|
20
|
Spatiotemporal localization of proteins in mycobacteria. Cell Rep 2021; 37:110154. [PMID: 34965429 PMCID: PMC8861988 DOI: 10.1016/j.celrep.2021.110154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023] Open
Abstract
Although prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function. Furthermore, our pipeline exploits morphologic proxies to enable a pseudo-temporal approximation of protein localization and identifies previously uncharacterized cell-cycle-dependent dynamics of essential mycobacterial proteins. Collectively, these data provide a systems perspective on the subcellular organization of mycobacteria and provide tools for the analysis of bacteria with non-standard growth characteristics. Zhu et al. develop a two-stage image analysis pipeline, MOMIA and GEMATRIA, that efficiently models the spatial and temporal dynamics of over 700 conserved proteins in M. smegmatis. Through the analysis they report spatial constraints of mycobacterial ribosomes and membrane complexes and reconstruct temporal dynamics from still image data.
Collapse
|
21
|
Ung KL, Alsarraf H, Kremer L, Blaise M. MmpL3, the trehalose monomycolate transporter, is stable in solution in several detergents and can be reconstituted into peptidiscs. Protein Expr Purif 2021; 191:106014. [PMID: 34767949 DOI: 10.1016/j.pep.2021.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Mycobacteria possess a complex and waxy cell wall comprising a large panel of glycolipids. Among these, trehalose monomycolate (TMM) represents abundant and crucial components for the elaboration of the mycomembrane. TMM is synthesized in the cytoplasmic compartment and translocated across the inner membrane by the MmpL3 transporter. Inhibitors impeding TMM transport by targeting MmpL3 show great promises as new antimycobacterials. The recent X-ray or Cryo-EM structures of MmpL3 complexed to TMM or its inhibitors have shed light on the mechanisms of TMM transport and inhibition. So far, purification procedures mainly involved the use of n-Dodecyl-ß-d-Maltopyranoside to solubilize and stabilize MmpL3 from Mycobacterium smegmatis (MmpL3Msm) or Lauryl Maltose Neopentyl Glycol for MmpL3 from Mycobacterium tuberculosis. Herein, we explored the possibility to solubilize and stabilize MmpL3 with other detergents. We demonstrate that several surfactants from the ionic, non-ionic and zwitterionic classes are prone to solubilize MmpL3Msm expressed in Escherichia coli. The capacity of these detergents to stabilize MmpL3Msm was evaluated by size-exclusion chromatography and thermal stability. This study unraveled three new detergents DM, LDAO and sodium cholate that favor solubilization and stabilization of MmpL3Msm in solution. In addition, we report a protocol that allows reconstitution of MmpL3Msm into peptidiscs.
Collapse
Affiliation(s)
- Kien Lam Ung
- Université de Montpellier, IRIM, CNRS, Montpellier, France
| | - Husam Alsarraf
- Université de Montpellier, IRIM, CNRS, Montpellier, France; Department of Molecular Biology and Genetics, University of Aarhus, 8000, Aarhus, Denmark
| | - Laurent Kremer
- Université de Montpellier, IRIM, CNRS, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Mickaël Blaise
- Université de Montpellier, IRIM, CNRS, Montpellier, France.
| |
Collapse
|
22
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
23
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
24
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res 2021; 54:930-939. [PMID: 33539084 PMCID: PMC8208102 DOI: 10.1021/acs.accounts.0c00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - John K Walker
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
26
|
The role of transport proteins in the production of microbial glycolipid biosurfactants. Appl Microbiol Biotechnol 2021; 105:1779-1793. [PMID: 33576882 DOI: 10.1007/s00253-021-11156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Several microorganisms are currently being used as production platform for glycolipid biosurfactants, providing a greener alternative to chemical biosurfactants. One of the reasons why these processes are commercially competitive is the fact that microbial producers can efficiently export their product to the extracellular environment, reaching high product titers. Glycolipid biosynthetic genes are often found in a dedicated cluster, amidst which genes encoding a dedicated transporter committed to shuttle the glycolipid to the extracellular environment are often found, as is the case for many other secondary metabolites. Knowing this, one can rely on gene clustering features to screen for novel putative transporters, as described and performed in this review. The above strategy proves to be very powerful to identify glycolipid transporters in fungi but is less valid for bacterial systems. Indeed, the genetics of these export systems are currently largely unknown, but some hints are given. Apart from the direct export of the glycolipid, several other transport systems have an indirect effect on glycolipid production. Specific importers dictate which hydrophilic and hydrophobic substrates can be used for production and influence the final yields. In eukaryotes, cellular compartmentalization allows the assembly of glycolipid building blocks in a highly specialized and efficient way. Yet, this requires controlled transport across intracellular membranes. Next to the direct export of glycolipids, the current state of the art regarding this indirect involvement of transporter systems in microbial glycolipid synthesis is summarized in this review. KEY POINTS: • Transporters are directly and indirectly involved in microbial glycolipid synthesis. • Yeast glycolipid transporters are found in their biosynthetic gene cluster. • Hydrophilic and hydrophobic substrate uptake influence microbial glycolipid synthesis.
Collapse
|
27
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Sethiya JP, Sowards MA, Jackson M, North EJ. MmpL3 Inhibition: A New Approach to Treat Nontuberculous Mycobacterial Infections. Int J Mol Sci 2020; 21:E6202. [PMID: 32867307 PMCID: PMC7503588 DOI: 10.3390/ijms21176202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Outside of Mycobacterium tuberculosis and Mycobacterium leprae, nontuberculous mycobacteria (NTM) are environmental mycobacteria (>190 species) and are classified as slow- or rapid-growing mycobacteria. Infections caused by NTM show an increased incidence in immunocompromised patients and patients with underlying structural lung disease. The true global prevalence of NTM infections remains unknown because many countries do not require mandatory reporting of the infection. This is coupled with a challenging diagnosis and identification of the species. Current therapies for treatment of NTM infections require multidrug regimens for a minimum of 18 months and are associated with serious adverse reactions, infection relapse, and high reinfection rates, necessitating discovery of novel antimycobacterial agents. Robust drug discovery processes have discovered inhibitors targeting mycobacterial membrane protein large 3 (MmpL3), a protein responsible for translocating mycolic acids from the inner membrane to periplasm in the biosynthesis of the mycobacterial cell membrane. This review focuses on promising new chemical scaffolds that inhibit MmpL3 function and represent interesting and promising putative drug candidates for the treatment of NTM infections. Additionally, agents (FS-1, SMARt-420, C10) that promote reversion of drug resistance are also reviewed.
Collapse
Affiliation(s)
- Jigar P. Sethiya
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Melanie A. Sowards
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Elton Jeffrey North
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| |
Collapse
|
29
|
Tan YZ, Zhang L, Rodrigues J, Zheng RB, Giacometti SI, Rosário AL, Kloss B, Dandey VP, Wei H, Brunton R, Raczkowski AM, Athayde D, Catalão MJ, Pimentel M, Clarke OB, Lowary TL, Archer M, Niederweis M, Potter CS, Carragher B, Mancia F. Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Mol Cell 2020; 78:683-699.e11. [PMID: 32386575 PMCID: PMC7263364 DOI: 10.1016/j.molcel.2020.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | | | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ana L Rosário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Richard Brunton
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Diogo Athayde
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128 Nangang, Taipei 11529, Taiwan
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Rainczuk AK, Klatt S, Yamaryo-Botté Y, Brammananth R, McConville MJ, Coppel RL, Crellin PK. MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates. J Biol Chem 2020; 295:6108-6119. [PMID: 32217691 DOI: 10.1074/jbc.ra119.011688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/22/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.
Collapse
Affiliation(s)
- Arek K Rainczuk
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Stephan Klatt
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yoshiki Yamaryo-Botté
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rajini Brammananth
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Paul K Crellin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
31
|
Veyron‐Churlet R, Saliou J, Locht C. Protein scaffold involving MSMEG_1285 maintains cell wall organization and mediates penicillin sensitivity in mycobacteria. FEBS J 2020; 287:4415-4426. [DOI: 10.1111/febs.15232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Romain Veyron‐Churlet
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| | - Jean‐Michel Saliou
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| | - Camille Locht
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| |
Collapse
|
32
|
Promiscuous Targets for Antitubercular Drug Discovery: The Paradigm of DprE1 and MmpL3. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020623] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development and spread of Mycobacterium tuberculosis multi-drug resistant strains still represent a great global health threat, leading to an urgent need for novel anti-tuberculosis drugs. Indeed, in the last years, several efforts have been made in this direction, through a number of high-throughput screenings campaigns, which allowed for the identification of numerous hit compounds and novel targets. Interestingly, several independent screening assays identified the same proteins as the target of different compounds, and for this reason, they were named “promiscuous” targets. These proteins include DprE1, MmpL3, QcrB and Psk13, and are involved in the key pathway for M. tuberculosis survival, thus they should represent an Achilles’ heel which could be exploited for the development of novel effective drugs. Indeed, among the last molecules which entered clinical trials, four inhibit a promiscuous target. Within this review, the two most promising promiscuous targets, the oxidoreductase DprE1 involved in arabinogalactan synthesis and the mycolic acid transporter MmpL3 are discussed, along with the latest advancements in the development of novel inhibitors with anti-tubercular activity.
Collapse
|
33
|
Ung KL, Alsarraf HMAB, Kremer L, Blaise M. The crystal structure of the mycobacterial trehalose monomycolate transport factor A, TtfA, reveals an atypical fold. Proteins 2019; 88:809-815. [PMID: 31833106 DOI: 10.1002/prot.25863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Trehalose monomycolate (TMM) represents an essential element of the mycobacterial envelope. While synthesized in the cytoplasm, TMM is transported across the inner membrane by MmpL3 but, little is known regarding the MmpL3 partners involved in this process. Recently, the TMM transport factor A (TtfA) was found to form a complex with MmpL3 and to participate in TMM transport, although its biological role remains to be established. Herein, we report the crystal structure of the Mycobacterium smegmatis TtfA core domain. The phylogenetic distribution of TtfA homologues in non-mycolate containing bacteria suggests that TtfA may exert additional functions.
Collapse
Affiliation(s)
- Kien Lam Ung
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Husam M A B Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France.,Institut de Recherche en Infectiologie de Montpellier (IRIM), INSERM, Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| |
Collapse
|
34
|
Veyron-Churlet R, Locht C. In Vivo Methods to Study Protein-Protein Interactions as Key Players in Mycobacterium Tuberculosis Virulence. Pathogens 2019; 8:pathogens8040173. [PMID: 31581602 PMCID: PMC6963305 DOI: 10.3390/pathogens8040173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Camille Locht
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|