1
|
Sorbini M, Arab S, Soni T, Frisiras A, Mehta S. How can the adult zebrafish and neonatal mice teach us about stimulating cardiac regeneration in the human heart? Regen Med 2023; 18:85-99. [PMID: 36416596 DOI: 10.2217/rme-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The proliferative capacity of mammalian cardiomyocytes diminishes shortly after birth. In contrast, adult zebrafish and neonatal mice can regenerate cardiac tissues, highlighting new potential therapeutic avenues. Different factors have been found to promote cardiomyocyte proliferation in zebrafish and neonatal mice; these include maintenance of mononuclear and diploid cardiomyocytes and upregulation of the proto-oncogene c-Myc. The growth factor NRG-1 controls cell proliferation and interacts with the Hippo-Yap pathway to modulate regeneration. Key components of the extracellular matrix such as Agrin are also crucial for cardiac regeneration. Novel therapies explored in this review, include intramyocardial injection of Agrin or zebrafish-ECM and NRG-1 administration. These therapies may induce regeneration in patients and should be further explored.
Collapse
Affiliation(s)
- Michela Sorbini
- Barts and the London School of Medicien and Dentistry, Queen Mary University of London, E1 2AD, London, UK.,Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Sammy Arab
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | - Tara Soni
- Imperial College School of Medicine, SW7 2AZ, London, UK
| | | | - Samay Mehta
- Imperial College School of Medicine, SW7 2AZ, London, UK
| |
Collapse
|
2
|
Luanpitpong S, Poohadsuan J, Klaihmon P, Kang X, Tangkiettrakul K, Issaragrisil S. Metabolic sensor O-GlcNAcylation regulates megakaryopoiesis and thrombopoiesis through c-Myc stabilization and integrin perturbation. STEM CELLS (DAYTON, OHIO) 2021; 39:787-802. [PMID: 33544938 PMCID: PMC8248081 DOI: 10.1002/stem.3349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
Metabolic state of hematopoietic stem cells (HSCs) is an important regulator of self‐renewal and lineage‐specific differentiation. Posttranslational modification of proteins via O‐GlcNAcylation is an ideal metabolic sensor, but how it contributes to megakaryopoiesis and thrombopoiesis remains unknown. Here, we reveal for the first time that cellular O‐GlcNAcylation levels decline along the course of megakaryocyte (MK) differentiation from human‐derived hematopoietic stem and progenitor cells (HSPCs). Inhibition of O‐GlcNAc transferase (OGT) that catalyzes O‐GlcNAcylation prolongedly decreases O‐GlcNAcylation and induces the acquisition of CD34+CD41a+ MK‐like progenitors and its progeny CD34−CD41a+/CD42b+ megakaryoblasts (MBs)/MKs from HSPCs, consequently resulting in increased CD41a+ and CD42b+ platelets. Using correlation and co‐immunoprecipitation analyses, we further identify c‐Myc as a direct downstream target of O‐GlcNAcylation in MBs/MKs and provide compelling evidence on the regulation of platelets by novel O‐GlcNAc/c‐Myc axis. Our data indicate that O‐GlcNAcylation posttranslationally regulates c‐Myc stability by interfering with its ubiquitin‐mediated proteasomal degradation. Depletion of c‐Myc upon inhibition of OGT promotes platelet formation in part through the perturbation of cell adhesion molecules, that is, integrin‐α4 and integrin‐β7, as advised by gene ontology and enrichment analysis for RNA sequencing and validated herein. Together, our findings provide a novel basic knowledge on the regulatory role of O‐GlcNAcylation in megakaryopoiesis and thrombopoiesis that could be important in understanding hematologic disorders whose etiology are related to impaired platelet production and may have clinical applications toward an ex vivo platelet production for transfusion.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jirarat Poohadsuan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kantpitchar Tangkiettrakul
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
3
|
Haldrup J, Strand SH, Cieza-Borrella C, Jakobsson ME, Riedel M, Norgaard M, Hedensted S, Dagnaes-Hansen F, Ulhoi BP, Eeles R, Borre M, Olsen JV, Thomsen M, Kote-Jarai Z, Sorensen KD. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene 2020; 40:763-776. [PMID: 33249427 DOI: 10.1038/s41388-020-01548-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Available tools for prostate cancer (PC) prognosis are suboptimal but may be improved by better knowledge about genes driving tumor aggressiveness. Here, we identified FRMD6 (FERM domain-containing protein 6) as an aberrantly hypermethylated and significantly downregulated gene in PC. Low FRMD6 expression was associated with postoperative biochemical recurrence in two large PC patient cohorts. In overexpression and CRISPR/Cas9 knockout experiments in PC cell lines, FRMD6 inhibited viability, proliferation, cell cycle progression, colony formation, 3D spheroid growth, and tumor xenograft growth in mice. Transcriptomic, proteomic, and phospho-proteomic profiling revealed enrichment of Hippo/YAP and c-MYC signaling upon FRMD6 knockout. Connectivity Map analysis and drug repurposing experiments identified pyroxamide as a new potential therapy for FRMD6 deficient PC cells. Finally, we established orthotropic Frmd6 and Pten, or Pten only (control) knockout in the ROSA26 mouse prostate. After 12 weeks, Frmd6/Pten double knockouts presented high-grade prostatic intraepithelial neoplasia (HG-PIN) and hyperproliferation, while Pten single-knockouts developed only regular PIN lesions and displayed lower proliferation. In conclusion, FRMD6 was identified as a novel tumor suppressor gene and prognostic biomarker candidate in PC.
Collapse
Affiliation(s)
- Jakob Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Clara Cieza-Borrella
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.,Department of Immunotechnology, Lund University, Medicon Village, 22100, Lund, Sweden
| | - Maria Riedel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maibritt Norgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Hedensted
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Rosalind Eeles
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Michael Borre
- Dept. of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zsofia Kote-Jarai
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Karina D Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Xia P, Liu P, Fu Q, Liu C, Luo Q, Zhang X, Cheng L, Qin T, Zhang H. Long noncoding RNA EPIC1 interacts with YAP1 to regulate the cell cycle and promote the growth of pancreatic cancer cells. Biochem Biophys Res Commun 2020; 522:978-985. [DOI: 10.1016/j.bbrc.2019.11.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|