4
|
Reams RR, Odedina FT, Carpten JD, Redda K, Stern MC, Krieger JL, Aparicio J, Hensel B, Askins N, Abreu A, Adams A, Agyare E, Ali J, Allen JM, Aló R, Baezconde-Garbanati L, Brant J, Brown CP, Buxbaum SG, Cohen P, Cozen W, Ezenwa MO, Falzarano S, Fillingim RB, Flores-Rozas H, Fredenburg KM, George T, Han B, Huang Y, Hughes Halbert C, Kiros GE, Lamango NS, Lee JH, Lyon DE, Mitchell DA, Mochona B, Nieva JJ, Offringa IA, Okunieff P, Parker A, Rhie SK, Richey JM, Rogers SC, Salhia B, Schmittgen TD, Segal R, Setiawan VW, Smith U, Su LM, Suther S, Trevino J, Velazquez-Villarreal EI, Webb FJ, Wu AH, Yao Y, Wilkie DJ. Florida-California Cancer Research, Education and Engagement (CaRE 2) Health Equity Center: Structure, Innovations, and Initial Outcomes. Cancer Control 2023; 30:10732748231197878. [PMID: 37703814 PMCID: PMC10501072 DOI: 10.1177/10732748231197878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION The Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center is a triad partnership committed to increasing institutional capacity for cancer disparity research, the diversity of the cancer workforce, and community empowerment. This article provides an overview of the structure, process innovations, and initial outcomes from the first 4 years of the CaRE2 triad partnership. METHODS CaRE2 serves diverse populations in Florida and California using a "molecule to the community and back" model. We prioritize research on the complex intersection of biological, environmental, and social determinants health, working together with scientific and health disparities communities, sharing expertise across institutions, bidirectional training, and community outreach. Partnership progress and outcomes were assessed using mixed methods and four Program Steering Committee meetings. RESULTS Research capacity was increased through development of a Living Repository of 81 cancer model systems from minority patients for novel cancer drug development. CaRE2 funded 15 scientific projects resulting in 38 publications. Workforce diversity entailed supporting 94 cancer trainees (92 URM) and 34 ESIs (32 URM) who coauthored 313 CaRE2-related publications and received 48 grants. Community empowerment was promoted via outreaching to more than 3000 individuals, training 145 community cancer advocates (including 28 Community Scientist Advocates), and publishing 10 community reports. CaRE2 members and trainees together have published 639 articles, received 61 grants, and 57 awards. CONCLUSION The CaRE2 partnership has achieved its initial aims. Infrastructure for translational cancer research was expanded at one partner institution, and cancer disparities research was expanded at the two cancer centers.
Collapse
Affiliation(s)
- R. Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | | | - John D. Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Kinfe Redda
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Mariana C. Stern
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Janice L. Krieger
- Department of Advertising, University of Florida, Gainesville, FL, USA
| | - Jose Aparicio
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Brooke Hensel
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Nissa Askins
- Florida State University College of Medicine, Tallahassee, FL, USA
| | - Andre Abreu
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Angela Adams
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Jamel Ali
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - John M. Allen
- Department of Pharmacotherapy & Translational Research, University of Florida, Orlando, FL, USA
| | - Richard Aló
- College of Science and Technology, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Lourdes Baezconde-Garbanati
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jason Brant
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Clyde P. Brown
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Sarah G. Buxbaum
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Pinchas Cohen
- University of Southern California Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Wendy Cozen
- Division of Hematology/Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Miriam O. Ezenwa
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Sara Falzarano
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Kristianna M. Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas George
- Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bo Han
- Departments of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Chanita Hughes Halbert
- Departments of Population and Public Health Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gebre-Egziabher Kiros
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Ji-Hyun Lee
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Debra E. Lyon
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Bereket Mochona
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL USA
| | - Jorge J. Nieva
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ite A. Offringa
- Departments of Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Alexander Parker
- College of Medicine, University of Florida, Jacksonville, FL, USA
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joyce M. Richey
- Department of Clinical Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Sherise C. Rogers
- Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bodour Salhia
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | | | - Richard Segal
- Department of Pharmaceutical Outcome and Policy, University of Florida, Gainesville, FL, USA
| | | | - Ukamaka Smith
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Li-Ming Su
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Suther
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Fern J. Webb
- Department of Surgery, University of Florida, Jacksonville, FL, USA
| | - Anna H. Wu
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Yingwei Yao
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| | - Diana J. Wilkie
- Department of Behavioral Nursing Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
9
|
Ge W, Goga A, He Y, Silva PN, Hirt CK, Herrmanns K, Guccini I, Godbersen S, Schwank G, Stoffel M. miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. Gastroenterology 2022; 162:269-284. [PMID: 34547282 DOI: 10.1053/j.gastro.2021.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood. METHODS The Ptf1aCre/+LSL-KrasG12D/+ and Ptf1aCre/+LSL-KrasG12D/+LSL-p53R172H/+ and caerulein-induced acute pancreatitis mice models were used. mir-802 was conditionally ablated in acinar cells to study the function of miR-802 in ADM. RESULTS We show that miR-802 is a highly abundant and acinar-enriched pancreatic miRNA that is silenced during early stages of injury or oncogenic KrasG12D-induced transformation. Genetic ablation of mir-802 cooperates with KrasG12D by promoting ADM formation. miR-802 deficiency results in de-repression of the miR-802 targets Arhgef12, RhoA, and Sdc4, activation of RhoA, and induction of the downstream RhoA effectors ROCK1, LIMK1, COFILIN1, and EZRIN, thereby increasing F-actin rearrangement. mir-802 ablation also activates SOX9, resulting in augmented levels of ductal and attenuated expression of acinar identity genes. Consistently with these findings, we show that this miR-802-RhoA-F-actin network is activated in biopsies of pancreatic cancer patients and correlates with poor survival. CONCLUSIONS We show miR-802 suppresses pancreatic cancer initiation by repressing oncogenic Kras-induced ADM. The role of miR-802 in ADM fills the gap in our understanding of oncogenic Kras-induced F-actin reorganization, acinar reprogramming, and PDAC initiation. Modulation of the miR-802-RhoA-F-actin network may be a new strategy to interfere with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Wenjie Ge
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Karolin Herrmanns
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Medical Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|