1
|
Lin YJ, Chen AN, Yin XJ, Li C, Lin CC. Human Microfibrillar-Associated Protein 4 (MFAP4) Gene Promoter: A TATA-Less Promoter That Is Regulated by Retinol and Coenzyme Q10 in Human Fibroblast Cells. Int J Mol Sci 2020; 21:ijms21218392. [PMID: 33182307 PMCID: PMC7664931 DOI: 10.3390/ijms21218392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Elastic fibers are one of the major structural components of the extracellular matrix (ECM) in human connective tissues. Among these fibers, microfibrillar-associated protein 4 (MFAP4) is one of the most important microfibril-associated glycoproteins. MFAP4 has been found to bind with elastin microfibrils and interact directly with fibrillin-1, and then aid in elastic fiber formation. However, the regulations of the human MFAP4 gene are not so clear. Therefore, in this study, we firstly aimed to analyze and identify the promoter region of the human MFAP4 gene. The results indicate that the human MFAP4 promoter is a TATA-less promoter with tissue- and species-specific properties. Moreover, the promoter can be up-regulated by retinol and coenzyme Q10 (coQ10) in Detroit 551 cells.
Collapse
Affiliation(s)
- Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan;
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - An-Ni Chen
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
| | - Xi Jiang Yin
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chunxiang Li
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
- Correspondence: ; Tel.: +886-4-26328001; Fax: +886-4-26311167
| |
Collapse
|
2
|
Chen TY, Chen MR, Liu SW, Lin JY, Yang YT, Huang HY, Chen JK, Yang CS, Lin KMC. Assessment of Polyethylene Glycol-Coated Gold Nanoparticle Toxicity and Inflammation In Vivo Using NF-κB Reporter Mice. Int J Mol Sci 2020; 21:ijms21218158. [PMID: 33142808 PMCID: PMC7662512 DOI: 10.3390/ijms21218158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Polyethylene glycol (PEG) coating of gold nanoparticles (AuNPs) improves AuNP distribution via blood circulation. The use of PEG-coated AuNPs was shown to result in acute injuries to the liver, kidney, and spleen, but long-term toxicity has not been well studied. In this study, we investigated reporter induction for up to 90 days in NF-κB transgenic reporter mice following intravenous injection of PEG-coated AuNPs. The results of different doses (1 and 4 μg AuNPs per gram of body weight), particle sizes (13 nm and 30 nm), and PEG surfaces (methoxyl- or carboxymethyl-PEG 5 kDa) were compared. The data showed up to 7-fold NF-κB reporter induction in mouse liver from 3 h to 7 d post PEG-AuNP injection compared to saline-injected control mice, and gradual reduction to a level similar to control by 90 days. Agglomerates of PEG-AuNPs were detected in liver Kupffer cells, but neither gross pathological abnormality in liver sections nor increased activity of liver enzymes were found at 90 days. Injection of PEG-AuNPs led to an increase in collagen in liver sections and elevated total serum cholesterol, although still within the normal range, suggesting that inflammation resulted in mild fibrosis and affected hepatic function. Administrating PEG-AuNPs inevitably results in nanoparticles entrapped in the liver; thus, further investigation is required to fully assess the long-term impacts by PEG-AuNPs on liver health.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
- Institute of Population Health, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jin-Yan Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Ya-Ting Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Hsin-Ying Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (T.-Y.C.); (M.-R.C.); (S.-W.L.); (J.-Y.L.); (Y.-T.Y.); (H.-Y.H.); (J.-K.C.); (C.-S.Y.)
- Correspondence: ; Tel.: +886-37206166-37118
| |
Collapse
|
3
|
Dimond A, Van de Pette M, Fisher AG. Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends Immunol 2020; 41:994-1005. [PMID: 33036908 DOI: 10.1016/j.it.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The remarkable process of light emission by living organisms has fascinated mankind for thousands of years. A recent expansion in the repertoire of catalytic luciferase enzymes, coupled with the discovery of the genes and pathways that encode different luciferin substrates, means that bioluminescence imaging (BLI) is set to revolutionize longitudinal and dynamic studies of gene control within biomedicine, including the regulation of immune responses. In this review article, we summarize recent advances in bioluminescence-based imaging approaches that promise to enlighten our understanding of in vivo gene and epigenetic control within the immune system.
Collapse
Affiliation(s)
- Andrew Dimond
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Mechanisms of Toxicity, MRC Toxicology Unit, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|