1
|
Grenier C, Griesshaber E, Schmahl W, Berning B, Checa AG. Skeletal microstructures of cheilostome bryozoans (phylum Bryozoa, class Gymnolaemata): crystallography and secretion patterns. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:405-424. [PMID: 39219676 PMCID: PMC11358562 DOI: 10.1007/s42995-024-00233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024]
Abstract
Gymnolaemata bryozoans produce CaCO3 skeletons of either calcite, aragonite, or both. Despite extensive research, their crystallography and biomineralization patterns remain unclear. We present a detailed study of the microstructures, mineralogy, and crystallography of eight extant cheilostome species using scanning electron microscopy, electron backscatter diffraction, atomic force microscopy, and micro-computed tomography. We distinguished five basic microstructures, three calcitic (tabular, irregularly platy, and granular), and two aragonitic (granular-platy and fibrous). The calcitic microstructures consist of crystal aggregates that transition from tabular or irregularly platy to granular assemblies. Fibrous aragonite consists of fibers arranged into spherulites. In all cases, the crystallographic textures are axial, and stronger in aragonite than in calcite, with the c-axis as the fiber axis. We reconstruct the biomineralization sequence in the different species by considering the distribution and morphology of the growth fronts of crystals and the location of the secretory epithelium. In bimineralic species, calcite formation always predates aragonite formation. In interior compound walls, growth proceeds from the cuticle toward the zooecium interior. We conclude that, with the exception of tabular calcite, biomineralization is remote and occurs within a relatively wide extrapallial space, which is consistent with the inorganic-like appearance of the microstructures. This biomineralization mode is rare among invertebrates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00233-1.
Collapse
Affiliation(s)
- Christian Grenier
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Wolfgang Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians Universität, 80333 Munich, Germany
| | - Björn Berning
- Institute for Geology, University of Hamburg, 20146 Hamburg, Germany
| | - Antonio G. Checa
- Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
- Instituto Andaluz de Ciencias de La Tierra, CSIC-Universidad de Granada, 18100 Armilla, Spain
| |
Collapse
|
2
|
Martino EDI. Scanning electron microscopy study of Lars Silns cheilostome bryozoan type specimens in the historical collections of natural history museums in Sweden. Zootaxa 2023; 5379:1-106. [PMID: 38220795 DOI: 10.11646/zootaxa.5379.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 01/16/2024]
Abstract
The type specimens of 42 cheilostome bryozoan species introduced by Lars Siln between 1938 and 1954 and housed at three different Swedish institutions (the Swedish Museum of Natural History in Stockholm, the Biological Museum in Lund and the Museum of Evolution in Uppsala) are here revised using scanning electron microscopy, with two exceptions, for the first time. As a result of this revision, new morphological observations were made for some species, such as ooecia in Antropora erecta, a costal pseudopore in Jullienula hippocrepis, intracolonial variation in the number of intracostal windows in Costaticella gisleni, and oral spines in Triphyllozoon mauritzoni. Some other observations confirmed the presence of structures/polymorphs in type material that had previously only been noted in non-type specimens, such as spinose interzooidal kenozooids in Retevirgula triangulata and putative brooding zooids in Bugulina kiuschiuensis. Structures originally interpreted as hydroid tube openings on the dorsal side of Triphyllozoon microstigmatum were confirmed to be avicularia, while the supposed kenozooidal attachment rootlet of Fedora nodosa might be the polypide tube of a coronate scyphozoan. In addition, the original combination Heliodoma goesi is here reinstated after Lagaaij assigned the species to Setosellina in 1963. The following new combinations are also proposed: Labioporella aviculifera for Siphonoporella aviculifera; Mangana canui and Mangana incrustata for Callopora canui and Tegella incrustata, respectively; Sphaerulobryozoon ovum for Fedora ovum. Lectotypes were selected when appropriate. This work clarifies the exact identity of some species that have never been recorded after their first description, such as Stylopoma magnovicellata and three species of Triphyllozoon, and contributes to the current increasing effort to digitize historical key specimens in natural history museum collections.
Collapse
|
3
|
Otter LM, Eder K, Kilburn MR, Yang L, O'Reilly P, Nowak DB, Cairney JM, Jacob DE. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat Commun 2023; 14:2254. [PMID: 37080977 PMCID: PMC10119311 DOI: 10.1038/s41467-023-37814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Biominerals, such as nacreous bivalve shells, are important archives of environmental information. Most marine calcifiers form their shells from amorphous calcium carbonate, hypothesised to occur via particle attachment and stepwise crystallisation of metastable precursor phases. However, the mechanism of this transformation, including the incorporation of trace elements used for environmental reconstructions, are poorly constrained. Here, using shells of the Mediterranean mussel, we explore the formation of nacre from the meso- to the atomic scale. We use a combination of strontium pulse-chase labelling experiments in aquaculture and correlated micro- to sub-nanoscale analysis to show that nacre grows in a dynamic two-step process with extensional and space-filling growth components. Furthermore, we show that nacre crystallizes via localised dissolution and reprecipitation within nanogranules. Our findings elucidate how stepwise crystallization pathways affect trace element incorporation in natural biominerals, while preserving their intricate hierarchical ultrastructure.
Collapse
Affiliation(s)
- L M Otter
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia.
| | - K Eder
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M R Kilburn
- Centre for Microscopy Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - L Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - P O'Reilly
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - D B Nowak
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - J M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - D E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Hegazy GE, Soliman NA, Ossman ME, Abdel-Fattah YR, Moawad MN. Isotherm and kinetic studies of cadmium biosorption and its adsorption behaviour in multi-metals solution using dead and immobilized archaeal cells. Sci Rep 2023; 13:2550. [PMID: 36781949 PMCID: PMC9925725 DOI: 10.1038/s41598-023-29456-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
It is crucial to identify more biological adsorbents that can efficiently uptake metals from wastewater. Dry haloalkaliphilic archaea Natronolimnobius innermongolicuswas evaluated for Cd ions biosorption. The optimal operating conditions (pH, biomass dose, initial metal concentration, contact time, and isotherms models) were tested. Biosorption process is influenced by the metal's solution pH with maximum removal of 83.36% being achieved at pH 8. Cadmium ions uptake reaches equilibrium in about 5 min of biosorption process. The Langmuir model was determined to better fit the Cd(II) biosorption by dry archaea. The maximal uptake capacity (qmax) of Cd(II) was 128.21 mg/g. The effect of multi-component system on biosorption behaviour of Pb, Ni, Cu, Fe, and Cd ions by immobilized dried archaeal cells, dried archaeal cells, and dried bryozoa was studied using Plackett-Burman experimental design. The investigated biosorbents were effective at removing metals from contaminated systems, particularly for Fe, Pb, and Cd ions. Moreover, the interaction behaviour of these metals was antagonistic, synergistic, or non-interactive in multi-metals system. SEM, EDX, and FTIR spectra revealed changes in surface morphology of the biomass through the biosorption process. Finally, continuous adsorption experiment was done to examine the ability of immobilized biomass to adsorb metals from wastewater.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt
| | - Mona E Ossman
- Environment and Natural Material Research Institute (ENMRI), City for Scientific Research and Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab City, Alexandria, Egypt
| | - Madelyn N Moawad
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
5
|
Understanding the crystallographic and nanomechanical properties of bryozoans. J Struct Biol 2022; 214:107882. [PMID: 35850322 DOI: 10.1016/j.jsb.2022.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
This study examines how microscale differences in skeletal ultrastructure affect the crystallographic and nanomechanical properties of two related bryozoan species: (i) Hornera currieae, which is found at relatively quiescent depths of c. 1000 m, and (ii) Hornera robusta, which lives at depths of 50-400 m where it is exposed to currents and storm waves. Microstructural and Electron Backscatter Diffraction (EBSD) observations show that in both species the secondary walls are composed of low-Mg calcite crystallites that grow with their c-axes perpendicular to the wall. Branches in H. currieae develop a strong preferred orientation of the calcite c-axes, while in H. robusta the c-axes are more scattered. Microstructural observations suggest that the degree of scattering is controlled by the underlying morphology of the skeletons: in H. currieae the laminated branch walls are smooth and relatively uninterrupted, whereas the wall architecture of H. robusta is modified by numerous deflections, forming pustules and ridges associated with microscopic tubules. Modelling of the Young's modulus and measurements of nanoindentation hardness indicate that the observed scattering of the crystallite c-axes affects the elastic modulus and nanohardness of the branches, and therefore controls the mechanical properties of the skeletal walls. At relatively high pressure in deep waters, the anisotropic skeletal architecture of H. currieae is aimed at concentrating elasticity normal to the skeleton wall. In comparison, in the relatively shallow and active hydrographic regime of the continental shelf, the elastically isotropic skeleton of H. robusta is designed to increase protection from external predators and stronger omni-directional currents.
Collapse
|
6
|
MicroCT as a Useful Tool for Analysing the 3D Structure of Lichens and Quantifying Internal Cephalodia in Lobaria pulmonaria. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-resolution X-ray computer tomography (microCT) is a well-established technique to analyse three-dimensional microstructures in 3D non-destructive imaging. The non-destructive three-dimensional analysis of lichens is interesting for many reasons. The examination of hidden structural characteristics can, e.g., provide information on internal structural features (form and distribution of fungal-supporting tissue/hypha), gas-filled spaces within the thallus (important for gas exchange and, thus, physiological processes), or yield information on the symbiont composition within the lichen, e.g., the localisation and amount of additional cyanobacteria in cephalodia. Here, we present the possibilities and current limitations for applying conventional laboratory-based high-resolution X-ray computer tomography to analyse lichens. MicroCT allows the virtual 3D reconstruction of a sample from 2D X-ray projections and is helpful for the non-destructive analysis of structural characters or the symbiont composition of lichens. By means of a quantitative 3D image analysis, the volume of internal cephalodia is determined for Lobaria pulmonaria and the external cephalodia of Peltigera leucophlebia. Nevertheless, the need for higher-resolution tomography for more detailed studies is emphasised. Particular challenges are the large sizes of datasets to be analysed and the high variability of the lichen microstructures.
Collapse
|
7
|
McDougall C, Aguilera F, Shokoohmand A, Moase P, Degnan BM. Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima. Front Genet 2021; 11:597459. [PMID: 33488672 PMCID: PMC7820862 DOI: 10.3389/fgene.2020.597459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs—organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls—we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics. Our results indicate that gene expression profiles correlate with different pearl defects, suggesting that gene regulation in the pearl sac contributes to pearl appearance and quality. For instance, pearl sacs that produced pearls with surface non-lustrous calcification significantly down-regulate genes associated with cilia and microtubule function compared to pearl sacs giving rise to lustrous pearls. These results suggest that gene expression profiling can advance our understanding of processes that control biomineralization, which may be of direct value to the pearl industry, particularly in relation to defects that result in low value pearls.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Felipe Aguilera
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ali Shokoohmand
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Patrick Moase
- Clipper Pearls and Autore Pearling, Broome, WA, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
8
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|