1
|
Wang B, Kou H, Wang Y, Zhang Q, Jiang D, Wang J, Zhao Z, Zhou Y, Zhang M, Sui L, Zhao M, Liu Y, Liu Y, Shi L, Wang F. LAP2α orchestrates alternative lengthening of telomeres suppression through telomeric heterochromatin regulation with HDAC1: unveiling a potential therapeutic target. Cell Death Dis 2024; 15:761. [PMID: 39426946 PMCID: PMC11490576 DOI: 10.1038/s41419-024-07116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
In response to the challenge of telomere attrition during DNA replication, cancer cells predominantly employ telomerase or, in 10-15% of cases, the alternative lengthening of telomeres (ALT). The intricate details of ALT, however, remain elusive. In this study, we unveil that the knockdown of lamina-associated polypeptide 2 alpha (LAP2α) in ALT cells results in telomere dysfunction, triggering a notable increase in ALT-associated hallmarks, including high frequencies of PML bodies (APBs), C-rich extrachromosomal circles (C-circles), and telomere sister chromatid exchange (T-SCE). Furthermore, LAP2α emerges as a crucial player in break-induced telomere replication for telomerase-positive cells following telomeric double-strand breaks. Mechanistically, our investigation suggests that LAP2α may influence the regulation of the heterochromatic state of telomeres, thereby affecting telomeric accessibility. In line with our findings, LAP2α expression is markedly reduced in ALT-positive osteosarcoma. And the use of methotrexate (MTX) can restore the heterochromatin state altered by LAP2α depletion. This is evidenced by a significant inhibition of tumor proliferation in ALT-positive patient-derived xenograft (PDX) mouse models. These results indicate the important role of LAP2α in regulating ALT activity and offer insights into the interplay between lamina-associated proteins and telomeres in maintaining telomere length. Importantly, our findings may help identify a more appropriate target population for the osteosarcoma therapeutic drug, MTX.
Collapse
Grants
- 32170762 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the grant from the National Natural Science Foundation of China (No. 32170762, 3217050514, 31771520, 31471293, 91649102, 92149302, 81772243, 81771135, 81970958, 82303619), Tianjin Health Research Project (No. 19YFZCSY00600), Science and Technology Project of Tianjin Municipal Health Committee (No. TJWJ2022XK018, TJWJ2022QN030) and the Natural Science Foundation of Tianjin City (No. 19JCJQJC63500)
Collapse
Affiliation(s)
- Bing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Haomeng Kou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Yuwen Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Qi Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, P. R. China
| | - Duo Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Juan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Ziqin Zhao
- Department of Pathology, Tianjin Hospital, 300221, Tianjin, P. R. China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Miaomiao Zhang
- Department of Pathology, Jining No.1 People's Hospital, 272000, Jining, Shandong, P. R. China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, 300192, Tianjin, P. R. China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 300221, Tianjin, P. R. China.
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 300192, Tianjin, P. R. China.
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, P. R. China.
| | - Feng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Genetics, School of Basic Medical Science, Institute of Prosthodontics School and Hospital of Stomatology, General Hospital, Tianjin Medical University, 300070, Tianjin, P. R. China.
| |
Collapse
|
2
|
Kumar SL, Mohanty A, Kumari A, Etikuppam AK, Kumar S R, Athar M, Kumar P K, Beniwal R, Potula MM, Gandham RK, Rao HBDP. Balanced spatiotemporal arrangements of histone H3 and H4 posttranslational modifications are necessary for meiotic prophase I chromosome organization. J Cell Physiol 2024; 239:e31201. [PMID: 38284481 DOI: 10.1002/jcp.31201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.
Collapse
Affiliation(s)
- S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Anjali Kumari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ajith Kumar Etikuppam
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ranjith Kumar S
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Mohd Athar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Kiran Kumar P
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | | | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
4
|
Fruit fly for anticancer drug discovery and repurposing. Ann Med Surg (Lond) 2023; 85:337-342. [PMID: 36845805 PMCID: PMC9949803 DOI: 10.1097/ms9.0000000000000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 02/28/2023] Open
|
5
|
Zhao Z, Hua Z, Luo X, Li Y, Yu L, Li M, Lu C, Zhao T, Liu Y. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother 2022; 150:113074. [PMID: 35658215 DOI: 10.1016/j.biopha.2022.113074] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used for the treatment of rheumatoid arthritis (RA) for about forty years and to date MTX remains the part of global standard of treatment for RA. The efficacy of MTX in RA is the result of multiple mechanisms of action. In order to summarize the possible pharmacological mechanisms of MTX in the treatment of RA, this review will elaborate on folate antagonism, promotion of adenosine accumulation, regulation of inflammatory signaling pathways, bone protection and maintenance of immune system function.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
6
|
Zou M, Gong L, Ke Q, Qi R, Zhu X, Liu W, Sun Q, Tang X, Luo Z, Gong X, Liu Y, Li DWC. Heterochromatin inhibits cGAS and STING during oxidative stress-induced retinal pigment epithelium and retina degeneration. Free Radic Biol Med 2022; 178:147-160. [PMID: 34875339 DOI: 10.1016/j.freeradbiomed.2021.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness characterized by degeneration of retina pigment epithelium (RPE) and photoreceptors in the macular region. Activation of the innate immune cGAS-STING signaling has been detected in RPE of dry AMD patients, but the regulatory basis is largely unexplored. Heterochromatin is a highly compact, transcription inert chromatin status. We have recently shown that heterochromatin is required for RPE survival through epigenetically silencing p53-mediated apoptosis signaling. Here, we found that cGAS and STING were dose-dependently upregulated in mouse RPE and retina during oxidative injury, correlated with decreased chromatin compaction in their gene loci. Genetic or pharmaceutical disruption of heterochromatin leads to elevated cGAS and STING expression and enhanced inflammatory response in oxidative stress-induced RPE and retina degeneration. In contrast, application of methotrexate (MTX), a recently identified heterochromatin-promoting drug, inhibits cGAS and STING in both RPE and retina, attenuates RPE/retina degeneration and inflammation. Further, we show that intact heterochromatin is required for MTX to repress cGAS and STING. Together, we demonstrated an unrevealed regulatory function of heterochromatin on cGAS and STING expression and provide potential new therapeutic strategy for AMD treatment.
Collapse
Affiliation(s)
- Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China.
| | - Qin Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Ruili Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xingfei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Wei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xiangcheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xiaodong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
7
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
8
|
Kinoshita-Ise M, Sachdeva M, Martinez-Cabriales SA, Shear NH, Lansang P. Oral Methotrexate Monotherapy for Severe Alopecia Areata: A Single Center Retrospective Case Series. J Cutan Med Surg 2021; 25:490-497. [PMID: 33715460 DOI: 10.1177/1203475421995712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although several therapeutic options have been suggested for alopecia areata (AA), none of them are consistently effective, thus making the management of severe or refractory cases challenging. Several studies have recently reported the usage of methotrexate (MTX) in AA; however, the pure effect of MTX monotherapy remains elusive. OBJECTIVE To evaluate efficacy and safety of oral methotrexate monotherapy for AA. METHODS We retrospectively reviewed the clinical course of AA patients including pediatric cases treated with MTX monotherapy. Their detailed clinical data including original severity of AA, final treatment outcome, the duration until the maximum response, and side effects, were assessed. Statistical analysis was performed to evaluate if the clinical factors including the duration of current alopecia, age, the presence of body hair loss, and sex were associated with treatment response. RESULTS All included patients had severe AA and failed standard therapies. Thirteen out of 15 cases demonstrated improvement during the monotherapy, and all responders demonstrated the maximum response within 1 year. Female patients had significantly better outcomes than male patients. Other factors did not significantly influence on the treatment outcome. None of the patients experienced side effects that were severe enough to terminate the treatment. CONCLUSIONS Our results support MTX monotherapy as a feasible option for severe AA patients who fail other standard therapies or for whom systemic corticosteroids are contraindicated.
Collapse
Affiliation(s)
- Misaki Kinoshita-Ise
- 71545 Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,7938 Department of Medicine, University of Toronto, Toronto, Canada.,38103 Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Muskaan Sachdeva
- 7938 Department of Medicine, University of Toronto, Toronto, Canada
| | - Sylvia A Martinez-Cabriales
- 71545 Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,7938 Department of Medicine, University of Toronto, Toronto, Canada.,12366 School of Medicine, Autonomous University of Nuevo Leon
| | - Neil H Shear
- 71545 Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,7938 Department of Medicine, University of Toronto, Toronto, Canada
| | - Perla Lansang
- 71545 Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.,7938 Department of Medicine, University of Toronto, Toronto, Canada.,Section of Paediatric Dermatology, Department of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models. Int J Mol Sci 2020; 21:ijms21113754. [PMID: 32466549 PMCID: PMC7312059 DOI: 10.3390/ijms21113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.
Collapse
|
11
|
How does methotrexate work? Biochem Soc Trans 2020; 48:559-567. [DOI: 10.1042/bst20190803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Abstract
Developed over 70 years ago as an anti-folate chemotherapy agent, methotrexate (MTX) is a WHO ‘essential medicine’ that is now widely employed as a first-line treatment in auto-immune, inflammatory diseases such as rheumatoid arthritis (RA), psoriasis and Crone's disease. When used for these diseases patients typically take a once weekly low-dose of MTX — a therapy which provides effective inflammatory control to tens of millions of people worldwide. While undoubtedly effective, our understanding of the anti-inflammatory mechanism-of-action of low-dose MTX is incomplete. In particular, the long-held dogma that this disease-modifying anti-rheumatic drug (DMARD) acts via the folate pathway does not appear to hold up to scrutiny. Recently, MTX has been identified as an inhibitor of JAK/STAT pathway activity, a suggestion supported by many independent threads of evidence. Intriguingly, the JAK/STAT pathway is central to both the inflammatory and immune systems and is a pathway already targeted by other RA treatments. We suggest that the DMARD activity of MTX is likely to be largely mediated by its inhibition of JAK/STAT pathway signalling while many of its side effects are likely associated with the folate pathway. This insight into the mechanism-of-action of MTX opens the possibility for repurposing this low cost, safe and effective drug for the treatment of other JAK/STAT pathway-associated diseases.
Collapse
|
12
|
Zhang L, Dao K, Kang A, Loyola AC, Shang R, Li J, Li WX. A Screening Method for Identification of Heterochromatin-Promoting Drugs Using Drosophila. J Vis Exp 2020. [PMID: 32225149 DOI: 10.3791/60917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Drosophila is an excellent model organism that can be used to screen compounds that might be useful for cancer therapy. The method described here is a cost-effective in vivo method to identify heterochromatin-promoting compounds by using Drosophila. The Drosophila's DX1 strain, having a variegated eye color phenotype that reflects the extents of heterochromatin formation, thereby providing a tool for a heterochromatin-promoting drug screen. In this screening method, eye variegation is quantified based on the surface area of red pigmentation occupying parts of the eye and is scored on a scale from 1 to 5. The screening method is straightforward and sensitive and allows for testing compounds in vivo. Drug screening using this method provides a fast and inexpensive way for identifying heterochromatin-promoting drugs that could have beneficial effects in cancer therapeutics. Identifying compounds that promote the formation of heterochromatin could also lead to the discovery of epigenetic mechanisms of cancer development.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Medicine, University of California San Diego;
| | - Kenny Dao
- Department of Medicine, University of California San Diego
| | - Angela Kang
- Department of Medicine, University of California San Diego
| | - Andre C Loyola
- Department of Medicine, University of California San Diego
| | - Robin Shang
- Department of Medicine, University of California San Diego
| | - Jinghong Li
- Department of Medicine, University of California San Diego
| | - Willis X Li
- Department of Medicine, University of California San Diego;
| |
Collapse
|
13
|
Streptonigrin at low concentration promotes heterochromatin formation. Sci Rep 2020; 10:3478. [PMID: 32103104 PMCID: PMC7044429 DOI: 10.1038/s41598-020-60469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Heterochromatin is essential for regulating global gene transcription and protecting genome stability, and may play a role in tumor suppression. Drugs promoting heterochromatin are potential cancer therapeutics but very few are known. In order to identify drugs that can promote heterochromatin, we used a cell-based method and screened NCI drug libraries consisting of oncology drugs and natural compounds. Since heterochromatin is originally defined as intensely stained chromatin in the nucleus, we estimated heterochromatin contents of cells treated with different drugs by quantifying the fluorescence intensity of nuclei stained with Hoechst DNA dye. We used HeLa cells and screened 231 FDA-approved oncology and natural substance drugs included in two NCI drug libraries representing a variety of chemical structures. Among these drugs, streptonigrin most prominently caused an increase in Hoechst-stained nuclear fluorescence intensity. We further show that streptonigrin treated cells exhibit compacted DNA foci in the nucleus that co-localize with Heterochromatin Protein 1 alpha (HP1α), and exhibit an increase in total levels of the heterochromatin mark, H3K9me3. Interestingly, we found that streptonigrin promotes heterochromatin at a concentration as low as one nanomolar, and at this concentration there were no detectable effects on cell proliferation or viability. Finally, in line with a previous report, we found that streptonigrin inhibits STAT3 phosphorylation, raising the possibility that non-canonical STAT function may contribute to the effects of streptonigrin on heterochromatin. These results suggest that, at low concentrations, streptonigrin may primarily enhance heterochromatin formation with little toxic effects on cells, and therefore might be a good candidate for epigenetic cancer therapy.
Collapse
|