1
|
Cai Z, Wang S, Zhou H, Cao D. Low expression of ZHX3 is associated with progression and poor prognosis in colorectal cancer. Transl Oncol 2024; 39:101829. [PMID: 37979559 PMCID: PMC10656720 DOI: 10.1016/j.tranon.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
Accumulating studies suggest that ZHX3, the member of ZHX family, is involved in a variety of biological functions such as development and differentiation. Recently, ZHX3 may also be involved in the progression of several cancer types including renal cancer, gastric cancer, liver cancer and breast cancer. However, the potential role of ZHX3 in colorectal cancer (CRC) is still unknown. In this study, we analyzed the protein levels of ZHX3 by immunohistochemistry and evaluated its relationship with the clinicopathological features and prognosis in 286 CRC patients. In vitro cell proliferation assay, plate colony formation assay and xenograft model in nude mice were applied to evaluate CRC cell proliferative ability. Our results showed that the expression of ZHX3 was significantly downregulated in CRC tissues compared with paired adjacent nontumor tissues. Furthermore, the ZHX3 expression was found to have a strong correlation with tumor size, tumor invasion depth and TNM stage. Kaplan-Meier analysis demonstrated that low ZHX3 expression was related to a poorer overall survival and disease-free survival in CRC patients. In addition, cox's proportional hazards analysis indicated that low ZHX3 expression was an independent prognostic indicator of poor prognosis. Functionally, reduced expression of ZHX3 promotes the proliferation of CRC cells both in vitro and in vivo. Conversely, overexpression of ZHX3 inhibited the growth of CRC cells, indicated that ZHX3 was significantly correlated with CRC progression. Our results indicate for the first time that ZHX3 may be a potential marker of cancer prognosis and CRC recurrence.
Collapse
Affiliation(s)
- Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Songsheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huabin Zhou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Cao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Using Single-Cell RNA Sequencing and MicroRNA Targeting Data to Improve Colorectal Cancer Survival Prediction. Cells 2023; 12:cells12020228. [PMID: 36672162 PMCID: PMC9856396 DOI: 10.3390/cells12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer has proven to be difficult to treat as it is the second leading cause of cancer death for both men and women worldwide. Recent work has shown the importance of microRNA (miRNA) in the progression and metastasis of colorectal cancer. Here, we develop a metric based on miRNA-gene target interactions, previously validated to be associated with colorectal cancer. We use this metric with a regularized Cox model to produce a small set of top-performing genes related to colon cancer. We show that using the miRNA metric and a Cox model led to a meaningful improvement in colon cancer survival prediction and correct patient risk stratification. We show that our approach outperforms existing methods and that the top genes identified by our process are implicated in NOTCH3 signaling and general metabolism pathways, which are essential to colon cancer progression.
Collapse
|
3
|
Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232012387. [PMID: 36293243 PMCID: PMC9604229 DOI: 10.3390/ijms232012387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VTN), a multifunctional glycoprotein with various physiological functions, exists in plasma and the extracellular matrix. It is known to be involved in the cell attachment, spreading and migration through binding to the integrin receptor, mainly via the RGD sequence. VTN is also widely used in the maintenance and expansion of pluripotent stem cells, but its effects go beyond that. Recent evidence shows more functions of VTN in the nervous system as it participates in neural differentiation, neuronutrition and neurogenesis, as well as in regulating axon size, supporting and guiding neurite extension. Furthermore, VTN was proved to play a key role in protecting the brain as it can reduce the permeability of the blood-brain barrier by interacting with integrin receptors in vascular endothelial cells. Moreover, evidence suggests that VTN is associated with neurodegenerative diseases, such as Alzheimer's disease, but its function has not been fully understood. This review summarizes the functions of VTN and its receptors in neurons and describes the role of VTN in the blood-brain barrier and neurodegenerative diseases.
Collapse
|
4
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
5
|
Isono W, Kawasaki T, Ichida JK, Ayabe T, Hiraike O, Umezawa A, Akutsu H. The combination of dibenzazepine and a DOT1L inhibitor enables a stable maintenance of human naïve-state pluripotency in non-hypoxic conditions. Regen Ther 2020; 15:161-168. [PMID: 33426214 PMCID: PMC7770342 DOI: 10.1016/j.reth.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 10/26/2022] Open
Abstract
Conventional human pluripotent stem cells (hPSCs), known for being in a primed state, are pivotal for both basic research and clinical applications since such cells produce various types of differentiated cells. Recent reports on PSCs shed light on the pluripotent hierarchy of stem cells and have promoted the exploration of new stem cell states along with their culture systems. Human naïve PSCs are expected to provide further knowledge of early developmental mechanisms and improvements for differentiation programmes in the regenerative therapy of conventionally primed PSCs. However, practical challenges exist in using naïve-state PSCs such as determining the conditions for hypoxic culture condition and showing limited stable cellular proliferation. Here, we have developed new leukemia inhibitory factor dependent PSCs by applying our previous work, the combination of dibenzazepine and a DOT1L inhibitor to achieve the stable culture of naïve-state PSCs. The potential of these cells to differentiate into all three germ layers was shown both in vitro and in vivo. Such new naïve-state PSCs formed dome-shaped colonies at a faster rate than conventional, primed-state human induced PSCs and could be maintained for an extended period in the absence of hypoxic culture conditions. We also identified relatively high expression levels of naïve cell markers. Thus, non-hypoxia treated, leukemia inhibitory factor-dependent PSCs are anticipated to have characteristics similar to those of naïve-like PSCs, and to enhance the utility value of PSCs. Such naïve PSCs may allow the molecular characterization of previously undefined naïve human PSCs, and to ultimately contribute to the use of human pluripotent stem cells in regenerative medicine and disease modelling.
Collapse
Affiliation(s)
- Wataru Isono
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Takuya Ayabe
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynaecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|