1
|
Peng Y, Tang Y, Li D, Ye J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms 2024; 12:1089. [PMID: 38930471 PMCID: PMC11206076 DOI: 10.3390/microorganisms12061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we focused on evaluating the impact of Pseudomonas abietaniphila BHJ04 on the growth of Pinus massoniana seedlings and its biocontrol efficacy against pine wilt disease (PWD). Additionally, the colonization dynamics of P. abietaniphila BHJ04 on P. massoniana were examined. The growth promotion experiment showed that P. abietaniphila BHJ04 significantly promoted the growth of the branches and roots of P. massoniana. Pot control experiments indicated that strain BHJ04 significantly inhibited the spread of PWD. There were significant changes in the expression of several genes related to pine wood nematode defense in P. massoniana, including chitinase, nicotinamide synthetase, and triangular tetrapeptide-like superfamily protein isoform 9. Furthermore, our results revealed significant upregulation of genes associated with the water stress response (dehydration-responsive proteins), genetic material replication (DNA/RNA polymerase superfamily proteins), cell wall hydrolase, and detoxification (cytochrome P450 and cytochrome P450 monooxygenase superfamily genes) in the self-regulation of P. massoniana. Colonization experiments demonstrated that strain BHJ04 can colonize the roots, shoots, and leaves of P. massoniana, and the colonization amount on the leaves was the greatest, reaching 160,000 on the 15th day. However, colonization of the stems lasted longer, with the highest level of colonization observed after 45 d. This study provides a preliminary exploration of the growth-promoting and disease-preventing mechanisms of P. abietaniphila BHJ04 and its ability to colonize pines, thus providing a new biocontrol microbial resource for the biological control of plant diseases.
Collapse
Affiliation(s)
- Yueyuan Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
| | - Da Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Liu F, Su S, Chen J, Xu Q, Song G, Dong Y, Jiang X, Chen D, Fang Y, Li J, Lin C, Su J, Cai S. The nematicide emamectin benzoate increases ROS accumulation in Pinus massoniana and poison Monochamus alternatus. PLoS One 2023; 18:e0295945. [PMID: 38127873 PMCID: PMC10735008 DOI: 10.1371/journal.pone.0295945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field. However, the interactions between EB and the host or the environment remain largely unknown, which limits the efficacy and stability of EB in practical field settings. In this study, we investigated the impact on PWN from EB injection for both adult and young host plants (Pinus massoniana) by taking a multi-omics (phenomics, transcriptomics, microbiome, and metabolomics) approach. We found that EB injection can significantly reduce the amount of PWN in both living adult and young pine trees. Additionally, EB was able to activate the genetic response of P. massoniana against PWN, promotes P. massoniana growth and development and resistance to Pine wilt disease, which requires the presence of PWN. Further, the presence of EB greatly increased the accumulation of reactive oxygen species (ROS) in the host plant in a PWN-dependent manner, possibly by affecting ROS-related microbes and metabolites. Moreover, we uncovered the function of EB limiting the consumption of P. massoniana by the JPS. Based on biochemical and gut microbial data, we found that EB can significantly reduces cellulase activity in JPS, whose transcription factors, sugar metabolism, and the phosphotransferase system are also affected. These results document the impact of EB on the entire PWD transmission chain through multi-omics regarding the dominant pine (P. massoniana) in China and provide a novel perspective for controlling PWD outbreaks in the field.
Collapse
Affiliation(s)
- Fengzhu Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jie Chen
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Qinghua Xu
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | - Gaofei Song
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | - Yuguang Dong
- Syngenta (China) Investment Co. Ltd., Shanghai, China
| | | | - Daoshun Chen
- Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| |
Collapse
|
3
|
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, Shuvalova AI, Ivanov NV, Popchenko MI, Samoilova AD, Polyakova AN, Dmitriev AA, Melnikova NV, Karpov DS, Bolsheva NL, Fedorova MS, Kudryavtseva AV. Culturable Bacterial Endophytes of Wild White Poplar ( Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. BIOLOGY 2023; 12:1519. [PMID: 38132345 PMCID: PMC10740426 DOI: 10.3390/biology12121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.
Collapse
Affiliation(s)
- Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Vsevolod V. Volodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Nikita V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Geography, Russian Academy of Sciences, Staromonetny Pereulok, 29/4, 119017 Moscow, Russia
| | - Aleksandra D. Samoilova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Aleksandra N. Polyakova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Jia J, Chen L, Yu W, Cai S, Su S, Xiao X, Tang X, Jiang X, Chen D, Fang Y, Wang J, Luo X, Li J, Huang Y, Su J. The novel nematicide chiricanine A suppresses Bursaphelenchus xylophilus pathogenicity in Pinus massoniana by inhibiting Aspergillus and its secondary metabolite, sterigmatocystin. FRONTIERS IN PLANT SCIENCE 2023; 14:1257744. [PMID: 38023855 PMCID: PMC10663349 DOI: 10.3389/fpls.2023.1257744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.
Collapse
Affiliation(s)
- Jiayu Jia
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Long Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Yu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangqing Jiang
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Daoshun Chen
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jinjin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Luo
- Forest Fire Prevention Office, Forestry Bureau of Yuoxi County, Sanming, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunpeng Huang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
6
|
Montecillo JAV, Bae H. In silico analysis of koranimine, a cyclic imine compound from Peribacillus frigoritolerans reveals potential nematicidal activity. Sci Rep 2022; 12:18883. [PMID: 36344604 PMCID: PMC9640594 DOI: 10.1038/s41598-022-20461-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Pine wilt disease (PWD) is a destructive vector-borne forest disease caused by the nematode Bursaphelenchus xylophilus. To date, several options are available for the management of pine wilt disease; however constant development and search for natural products with potential nematicidal activity are imperative to diversify management options and to cope with the possible future emergence of resistance in parasitic nematodes. Here, a combined metabolomics and genomics approach was employed to investigate the chemical repertoire and biosynthetic potential of the bacterial endophyte Peribacillus frigoritolerans BE93, previously characterized to exhibit nematicidal activity against B. xylophilus. Feature-based molecular networking revealed the presence of diverse secondary metabolites. A cyclic imine heptapeptide, koranimine, was found to be among the most abundant secondary metabolites produced. Genome mining displayed the presence of several putative biosynthetic gene clusters (BGCs), including a dedicated non-ribosomal peptide synthase (NRPS) BGC for koranimine. Given the non-ribosomal peptide nature of koranimine, in silico molecular docking analysis was conducted to investigate its potential nematicidal activity against the target receptor ivermectin-sensitive invertebrate α glutamate-gated chloride channel (GluCl). Results revealed the binding of koranimine at the allosteric site of the channel-the ivermectin binding site. Moreover, the ligand-receptor interactions observed were mostly shared between koranimine and ivermectin when bound to the α GluCl receptor thus, suggesting a possibly shared mechanism of potential nematicidal activity. This study highlights the efficiency of combined metabolomics and genomics approach in the identification of candidate compounds.
Collapse
Affiliation(s)
- Jake Adolf V Montecillo
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
7
|
Identification and antibacterial evaluation of endophytic actinobacteria from Luffa cylindrica. Sci Rep 2022; 12:18236. [PMID: 36309579 PMCID: PMC9617871 DOI: 10.1038/s41598-022-23073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of antibiotic-resistant bacteria has limited treatment options and led to the untreatable infections, thereby necessitating the discovery of new antibiotics to battel against bacteria. Natural products from endophytic actinobacteria (EA) serve as a reservoir for discovery of new antibiotics. Therefore, the current study focused on the isolation and antibacterial properties of EA isolated from Luffa cylindrica. Six strains were identified using morphological characterization, SEM analyses and 16S rRNA gene sequencing from the roots and leaves of the plant. They were taxonomically classified as Streptomycetaceae family. This is the first report on EA form L. cylindrica. The strains produced a chain of oval, cubed or cylindrical shaped spores with spiny or smooth surfaces. Three strains; KUMS-B3, KUMS-B4 and KUMS-B6 were reported as endophytes for the first time. Fifty percent of isolates were isolated from leaves samples using YECD medium. Our results showed that the sampling time and seasons may affect the bacterial diversity. All six strains had antibacterial activity against at least one of the tested bacteria S. aureus, P. aeruginosa, and E. coli. Among the strains, KUMS-B6 isolate, closely related to S. praecox, exhibited the highest antibacterial activity against both gram-positive and negative bacteria. KUMS-B6, KUMS-B5 and KUMS-B4 isolates strongly inhibited the growth of P. aeruginosa. Interestingly, the strains, isolated from leaves exhibited stronger antagonist activities compared to those isolated from the roots. The study revealed that the isolated strains from Luffa produce a plethora of bioactive substances that are potential source of new drug candidates for the treatment of infections.
Collapse
|
8
|
Ali AR, Bahrami Y, Kakaei E, Mohammadzadeh S, Bouk S, Jalilian N. Isolation and identification of endophytic actinobacteria from Citrullus colocynthis (L.) Schrad and their antibacterial properties. Microb Cell Fact 2022; 21:206. [PMID: 36217205 PMCID: PMC9548430 DOI: 10.1186/s12934-022-01936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibiotic resistance poses a major threat to human health globally. Consequently, new antibiotics are desperately required to discover and develop from unexplored habitats to treat life-threatening infections. Microbial natural products (NP) are still remained as primary sources for the discovery of new antibiotics. Endophytic actinobacteria (EA) which are well-known producers of bioactive compounds could provide novel antibiotic against pathogenic bacteria. This research aimed to isolate EA from the Citrullus colocynthis plant and explore the antibacterial properties of their metabolites against pathogenic bacteria. RESULTS The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Six endophytic actinobacteria were isolated from Citrullus colocynthis plant. They were taxonomically classified into two family namely Streptomycetaceae and Nocardiopsaceae, based on colony morphological features, scanning electron microscope analysis and molecular identification of isolates. This is the first report on the identification of EA form Citrullus colocynthis and their antibacterial activity. The strains generated a chain of vibrio-comma, cubed or cylindrical shaped spores with indenting or smooth surfaces. Three of those were reported as endophytes for the first time. The strain KUMS-C1 showed 98.55% sequence similarity to its closely related strains which constitutes as a novel species/ strain for which the name Nocardiopsis colocynthis sp. was proposed for the isolated strain. Five isolated strains had antagonist activity against S. aureus, P. aeruginosa, and E. coli. Among those, stain KUMS-C6 showed the broadest spectrum of antibacterial activity against all test bacteria, whereas the strain KUMS-C4 had no antibacterial activity. CONCLUSIONS NPs have a long history of safe and efficient use for development of pharmaceutical products. Our study highlights that Citrullus colocynthis is an untapped source for the isolation of EA, generating novel and bioactive metabolites by which might lead to discovery of new antibiotic(s). This study reveals the future of new antibiotic developments looks bright against multi-drug resistance diseases by mining under- or unexplored habitats.
Collapse
Affiliation(s)
- Aram R Ali
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Mohammadzadeh
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Jalilian
- Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, (AREEO), Kermanshah, Iran
| |
Collapse
|
9
|
GAO J, PAN T, CHEN X, Wei Q, Xu L. Proteomic analysis of Masson pine with high resistance to pine wood nematodes. PLoS One 2022; 17:e0273010. [PMID: 35960732 PMCID: PMC9374249 DOI: 10.1371/journal.pone.0273010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pine wilt disease is a dangerous pine disease globally. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, to study the molecular mechanism of their high resistance to pine wood nematodes (PWN,Bursaphelenchus xylophilus). Nine strains of seedlings of genetically stable Masson pine screened from different families with high resistance to PWN were used. The same number of sensitive clones were used as susceptible controls. Total proteins were extracted for tandem mass tag (TMT) quantitative proteomic analysis. The key proteins were verified by parallel reaction monitoring (PRM). A threshold of upregulation greater than 1.3-fold or downregulation greater than 0.3-fold was considered significant in highly resistant strains versus sensitive strains. A total of 3491 proteins were identified from the seedling tissues, among which 2783 proteins contained quantitative information. A total of 42 proteins were upregulated and 96 proteins were downregulated in the resistant strains. Functional enrichment analysis found significant differences in the proteins with pectin esterase activity or peroxidase activity. The proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, and the sugar glycosaminoglycan degradation pathway were also changed significantly. The PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase, and chitinase were significantly downregulated, while aspartic protease was significantly upregulated, which was consistent with the proteomic data. These results suggest that Masson pine can degrade nematode-related proteins by increasing protease to inhibit their infestation, and can enhance the resistance of Masson pine to PWN by downregulating carbon metabolism to limit the carbon available to PWN or for involvement in cell wall components or tissue softening. Most of the downregulated proteins are supposed to act as an alternative mechanism for latter enhancement after pathogen attacks. The highly resistant Masson pine, very likely, harbors multiple pathways, both passive and active, to defend against PWN infestation.
Collapse
Affiliation(s)
- Jingbin GAO
- Anhui Vocational & Technical College of Forestry, Hefei, China
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
| | - Ting PAN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Xuelian CHEN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Qiang Wei
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Liuyi Xu
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
- * E-mail:
| |
Collapse
|
10
|
Two Nematicidal Compounds from Lysinimonas M4 against the Pine Wood Nematode, Bursaphelenchus xylophilus. FORESTS 2022. [DOI: 10.3390/f13081191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A rich source of bioactive secondary metabolites from microorgannisms are widely used to control plant diseases in an eco-friendly way. To explore ideal candidates for prevention of pine wilt disease (PWD), a bacterial strain from rhizosphere of Pinus thunbergii, Lysinimonas M4, with nematicidal activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, was isolated. Two nematicidal compounds were obtained from the culture of Lysinimonas M4 by silica gel chromatography based on bioactivity-guided fractionation and were subsequently identified as 2-coumaranone and cyclo-(Phe-Pro) by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The 2-coumaranone and cyclo-(Phe-Pro) showed significant nematicidal activity against PWN, with LC50 values at 24 h of 0.196 mM and 0.425 mM, respectively. Both compounds had significant inhibitory effects on egg hatching, feeding, and reproduction. The study on nematicidal mechanisms revealed that 2-coumaranone and cyclo-(Phe-Pro) caused the accumulation of reactive oxygen species (ROS) in nematodes, along with a notable decrease in CAT and POS activity and an increase in SOD activity in nematodes, which might contribute to the death of pine wood nematodes. Bioassay tests demonstrated that the two compounds could reduce the incidence of wilting in Japanese black pine seedlings. This research offers a new bacterial strain and two metabolites for biocontrol against PWN.
Collapse
|
11
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
12
|
Montecillo JAV, Bae H. Reclassification of Brevibacterium frigoritolerans as Peribacillus frigoritolerans comb. nov. based on phylogenomics and multiple molecular synapomorphies. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic assignment of
Brevibacterium frigoritolerans
together with the in-house environmental isolate EB93 was reassessed in this study using phylogenetic and phylogenomic approaches, and the detection of multiple molecular synapomorphies. Results from the reconstructed phylogenetic trees based on the 16S rRNA gene sequences, the concatenated protein sequences of GyrA-GyrB-RpoB-RpoC, and the whole-genome sequences revealed the consistent exclusion of
B. frigoritolerans
and the environmental isolate EB93 from the cluster formed by the type strains of the genus
Brevibacterium
. In addition,
B. frigoritolerans
and the environmental isolate EB93 were both observed to form a clade together with the type strains of the genus
Peribacillus
. The results from the analysis of the digital DNA–DNA hybridization, average nucleotide identity, average amino acid identity and the difference in the G+C content also corroborated with the phylogenetic inference, and that
B. frigoritolerans
and the environmental isolate EB93 were of the same species. Furthermore, the presence of the molecular synapomorphies in the protein sequences noted in the description of the genus
Peribacillus
were also observed in
B. frigoritolerans
, further strengthening its taxonomic affiliation in the genus. Based on the evidence from the multiple lines of analyses, we propose the reclassification of
Brevibacterium frigoritolerans
as a member of the genus
Peribacillus
and assume the name Peribacillus frigoritolerans comb. nov. (type strain DSM 8801 T=ATCC 25097T=CCUG 43489T=CIP 67.20T=JCM 11681T).
Collapse
Affiliation(s)
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
14
|
New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020. Sci Rep 2022; 12:3947. [PMID: 35273247 PMCID: PMC8913828 DOI: 10.1038/s41598-022-07879-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Endophytic bacteria, a rich source of bioactive secondary metabolites, are ideal candidates for environmentally benign agents. In this study, an endophytic strain, Streptomyces sp. AE170020, was isolated and selected for the purification of nematicidal substances based on its high nematicidal activity. Two highly active components, aureothin and alloaureothin, were identified, and their chemical structures were determined using spectroscopic analysis. Both compounds suppressed the growth, reproduction, and behavior of Bursaphelenchus xylophilus. In in vivo experiments, the extracts of strain Streptomyces sp. AE170020 effectively suppressed the development of pine wilt disease in 4-year-old plants of Pinus densiflora. The potency of secondary metabolites isolated from endophytic strains suggests applications in controlling Bursaphelenchus xylophilus and opens an avenue for further research on exploring bioactive substances against the pine wood nematode.
Collapse
|
15
|
Patel JK, Gohel K, Patel H, Solanki T. Wheat Growth Dependent Succession of Culturable Endophytic Bacteria and Their Plant Growth Promoting Traits. Curr Microbiol 2021; 78:4103-4114. [PMID: 34622308 DOI: 10.1007/s00284-021-02668-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Endophytic bacteria present ubiquitously in all plant parts. Their community structure may vary depending on plant tissue and growth condition. This work mainly focused on exploring the diversity of culturable nitrogen-fixing endophytic bacteria in above-ground plant parts of wheat by harvesting it during various growth points (Seed stage, 1st, 2nd, and 3rd month old plants, respectively). Distinct endophytic bacterial colonies were selected on Jensen's agar plate. Based on the 16S rRNA sequencing, 43 putative nitrogen-fixing endophytic bacteria were identified. Most of the isolates were found unique to the plant growth phase except for Pseudomonas sp., Bacillus sp., Paenibacillus sp., Microbacterium sp., Exiguobacterium sp. Further, endophytic bacteria were scrutinized for their plant growth promoting traits. They were found positive for IAA production (100%), P-solubilization (21%), Zn-solubilization (63%), ammonia production (93%), and nifH gene (33%). Extracellular enzyme production was found positive for cellulase (98%), pectinase (98%), and protease (100%). Their endophytic colonization ability was assessed using reactive oxygen species (ROS) induction assay, upon their entry inside the host plant.
Collapse
Affiliation(s)
- Janki K Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India.
| | - Krupa Gohel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Hiral Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| | - Tanvi Solanki
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388 421, India
| |
Collapse
|
16
|
Kumar KK, Dara SK. Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4269. [PMID: 33920580 PMCID: PMC8073158 DOI: 10.3390/ijerph18084269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Endophytes are symbiotic microorganisms that colonize plant tissues and benefit plants in multiple ways including induced systemic resistance to biotic and abiotic stresses. Endophytes can be sustainable alternatives to chemical nematicides and enhance plant health in a variety of cropping and natural environments. Several in vitro and in vivo studies demonstrated the potential of multiple species of Fusarium and Bacillus against plant-parasitic nematodes in horticultural, agricultural, and fodder crops and in forestry. While there were efforts to commercialize some of the endophytes as bionematicides, a lack of good formulations with consistent field efficacy has been a major hurdle in commercializing endophytes for nematode control. Identification of efficacious and environmentally resilient strains, a thorough understanding of their modes of action, interactions with various biotic and abiotic factors, and developing strategies that improve their effectiveness are critical areas to advance the commercialization of bionematicides based on fungal and bacterial endophytes.
Collapse
Affiliation(s)
- K. Kiran Kumar
- ICAR-Central Citrus Research Institute, Nagpur 440033, Maharashtra, India;
| | - Surendra K. Dara
- University of California Cooperative Extension, 2156 Sierra Way, Ste. C, San Luis Obispo, CA 93401, USA
| |
Collapse
|
17
|
Telagathoti A, Probst M, Khomenko I, Biasioli F, Peintner U. High-Throughput Volatilome Fingerprint Using PTR-ToF-MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera. J Fungi (Basel) 2021; 7:66. [PMID: 33478017 PMCID: PMC7835917 DOI: 10.3390/jof7010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
In ecology, Volatile Organic Compounds (VOCs) have a high bioactive and signaling potential. VOCs are not only metabolic products, but are also relevant in microbial cross talk and plant interaction. Here, we report the first large-scale VOC study of 13 different species of Mortierella sensu lato (s. l.) isolated from a range of different alpine environments. Proton Transfer Reaction-Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was applied for a rapid, high-throughput and non-invasive VOC fingerprinting of 72 Mortierella s. l. isolates growing under standardized conditions. Overall, we detected 139 mass peaks in the headspaces of all 13 Mortierella s. l. species studied here. Thus, Mortierella s. l. species generally produce a high number of different VOCs. Mortierella species could clearly be discriminated based on their volatilomes, even if only high-concentration mass peaks were considered. The volatilomes were partially phylogenetically conserved. There were no VOCs produced by only one species, but the relative concentrations of VOCs differed between species. From a univariate perspective, we detected mass peaks with distinctively high concentrations in single species. Here, we provide initial evidence that VOCs may provide a competitive advantage and modulate Mortierella s. l. species distribution on a global scale.
Collapse
Affiliation(s)
- Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Iuliia Khomenko
- Fondazione Edmund Mach, Research and Innovation Centre, Food Quality and Nutrition Department, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Fondazione Edmund Mach, Research and Innovation Centre, Food Quality and Nutrition Department, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| |
Collapse
|