1
|
Teng T, Zheng Y, Zhang M, Sun G, Li Z, Shi B, Shang T. Chronic cold stress promotes inflammation and ER stress via inhibiting GLP-1R signaling, and exacerbates the risk of ferroptosis in the liver and pancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124647. [PMID: 39089475 DOI: 10.1016/j.envpol.2024.124647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The cold climates in autumn and winter threatens human health. The aim of this study was to reveal the effects of prolonged cold exposure on the liver and pancreas based on GLP-1R signaling, oxidative stress, endoplasmic reticulum (ER) stress and ferroptosis by Yorkshire pig models. Yorkshire pigs were divided into the control group and chronic cold stress (CCS) group. The results showed that CCS induced oxidative stress injury, activated Nrf2 pathway and inhibited the expression of GLP-1R in the liver and pancreas (P < 0.05). The toll-like receptor 4 (TLR4) pathway was activated in the liver and pancreas, accompanied by the enrichment of IL-1β and TNF-α during CCS (P < 0.05). Moreover, the kinase RNA-like endoplasmic reticulum kinase (PERK), inositol requiring kinase 1 (IRE1), X-box-binding protein 1 (XBP1) and eukaryotic initiation factor 2α (eIF2α) expression in the liver and pancreas was up-regulated during CCS (P < 0.05). In addition, CCS promoted the prostaglandin-endoperoxide synthase 2 (PTGS2) expression and inhibited the ferritin H (FtH) expression in the liver. Summarily, CCS promotes inflammation, ER stress and apoptosis by inhibiting the GLP-1R signaling and inducing oxidative stress, and exacerbates the risk of ferroptosis in the liver and pancreas.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yusong Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Wang L, Piao Y, Guo F, Wei J, Chen Y, Dai X, Zhang X. Current progress of pig models for liver cancer research. Biomed Pharmacother 2023; 165:115256. [PMID: 37536038 DOI: 10.1016/j.biopha.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Preclinical trials play critical roles in assessing the safety and efficiency of novel therapeutic strategies for human diseases including live cancer. However, most therapeutic strategies that were proved to be effective in preclinical cancer models failed in human clinical trials due to the lack of appropriate disease animal models. Therefore, it is of importance and urgent to develop a precise animal model for preclinical cancer research. Liver cancer is one of the most frequently diagnosed cancers with low 5-year survival rate. Recently, porcine attracted increasing attentions as animal model in biomedical research. Porcine liver cancer model may provide a promising platform for biomedical research due to their similarities to human being in body size, anatomical characteristics, physiology and pathophysiology. In this review, we comprehensively summarized and discussed the advantages and disadvantages, rationale, current status and progress of pig models for liver cancer research.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yuexian Piao
- Invasive Technology Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Delgado-Coello B, Navarro-Alvarez N, Mas-Oliva J. The Influence of Interdisciplinary Work towards Advancing Knowledge on Human Liver Physiology. Cells 2022; 11:cells11223696. [PMID: 36429123 PMCID: PMC9688355 DOI: 10.3390/cells11223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
The knowledge accumulated throughout the years about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health. Here, we provide a brief history of the milestones that have advanced liver surgery, and review some of the new insights offered by the interdisciplinary work using animals, in vitro models, tissue engineering, or mathematical models to help advance the knowledge on liver regeneration. We also present several of the main approaches currently available aiming at providing liver support and overcoming organ shortage and we conclude with some of the challenges found in clinical practice and the ethical issues that have concomitantly emerged with the use of those approaches.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence:
| | - Nalu Navarro-Alvarez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Departament of Molecular Biology, Universidad Panamericana School of Medicine, Mexico City 03920, Mexico
- Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Jaime Mas-Oliva
- Department of Structural Biology and Biochemistry, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Higashi H, Yagi H, Kuroda K, Tajima K, Kojima H, Nishi K, Morisaku T, Hirukawa K, Fukuda K, Matsubara K, Kitago M, Shinoda M, Obara H, Adachi S, Nishimura K, Natsume T, Tomi M, Soto-Gutierrez A, Kitagawa Y. Transplantation of bioengineered liver capable of extended function in a preclinical liver failure model. Am J Transplant 2022; 22:731-744. [PMID: 34932270 PMCID: PMC9008767 DOI: 10.1111/ajt.16928] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023]
Abstract
Unlimited organ availability would represent a paradigm shift in transplantation. Long-term in vivo engraftment and function of scaled-up bioengineered liver grafts have not been previously reported. In this study, we describe a human-scale transplantable liver graft engineered on a porcine liver-derived scaffold. We repopulated the scaffold parenchyma with primary hepatocytes and the vascular system with endothelial cells. For in vivo functional testing, we performed auxiliary transplantation of the repopulated scaffold in pigs with induced liver failure. It was observed that the auxiliary bioengineered liver graft improved liver function for 28 days and exhibited upregulation of liver-specific genes. This study is the first of its kind to present 28 days of posttransplant evaluation of a bioengineered liver graft using a preclinical large animal model. Furthermore, it provides definitive evidence for the feasibility of engineering human-scale transplantable liver grafts for clinical applications.
Collapse
Affiliation(s)
- Hisanobu Higashi
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kohei Kuroda
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kazuki Tajima
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan,Department of Small Animal Internal Medicine, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Hideaki Kojima
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Toshinori Morisaku
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kazuya Hirukawa
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan
| | - Kumiko Nishimura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan
| | - Masatoshi Tomi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato, Tokyo, Japan
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|