1
|
Zhu L, Su Y, Ma S, Guo L, Yang S, Yu H. Comparative Proteomic Analysis Reveals Candidate Pathways Related to the Effect of Different Light Qualities on the Development of Mycelium and Fruiting Body of Pleurotus ostreatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1361-1375. [PMID: 38166381 DOI: 10.1021/acs.jafc.3c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Light affects the morphology and physiology of Pleurotus ostreatus. However, the underlying molecular mechanism of this effect remains unclear. In this study, a label-free comparative proteomic analysis was conducted to investigate the global protein expression profile of the mycelia and fruiting bodies of P. ostreatus PH11 growing under four different light quality treatments. Among all the 2234 P. ostreatus proteins, 1349 were quantifiable under all tested conditions. A total of 1100 differentially expressed proteins were identified by comparing the light group data with those of the darkness group. GO and KEGG enrichment analyses indicated that the oxidative phosphorylation, proteasome, and mRNA surveillance pathways were the most related pathways under the light condition. qRT-PCR verified that the expression of the white collar 1 protein was significantly enhanced under white light. Additionally, glutamine synthetase and aldehyde dehydrogenase played important roles during light exposure. This study provides valuable insight into the P. ostreatus light response mechanism, which will lay the foundation for improved cultivation.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Yao Su
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| |
Collapse
|
2
|
Betancourt D, Lawal T, Tomko RJ. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Biomolecules 2023; 13:1223. [PMID: 37627288 PMCID: PMC10452565 DOI: 10.3390/biom13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.
Collapse
Affiliation(s)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (D.B.); (T.L.)
| |
Collapse
|
3
|
Collins MA, Avery R, Albert FW. Substrate-specific effects of natural genetic variation on proteasome activity. PLoS Genet 2023; 19:e1010734. [PMID: 37126494 PMCID: PMC10174532 DOI: 10.1371/journal.pgen.1010734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/11/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Protein degradation is an essential biological process that regulates protein abundance and removes misfolded and damaged proteins from cells. In eukaryotes, most protein degradation occurs through the stepwise actions of two functionally distinct entities, the ubiquitin system and the proteasome. Ubiquitin system enzymes attach ubiquitin to cellular proteins, targeting them for degradation. The proteasome then selectively binds and degrades ubiquitinated substrate proteins. Genetic variation in ubiquitin system genes creates heritable differences in the degradation of their substrates. However, the challenges of measuring the degradative activity of the proteasome independently of the ubiquitin system in large samples have limited our understanding of genetic influences on the proteasome. Here, using the yeast Saccharomyces cerevisiae, we built and characterized reporters that provide high-throughput, ubiquitin system-independent measurements of proteasome activity. Using single-cell measurements of proteasome activity from millions of genetically diverse yeast cells, we mapped 15 loci across the genome that influence proteasomal protein degradation. Twelve of these 15 loci exerted specific effects on the degradation of two distinct proteasome substrates, revealing a high degree of substrate-specificity in the genetics of proteasome activity. Using CRISPR-Cas9-based allelic engineering, we resolved a locus to a causal variant in the promoter of RPT6, a gene that encodes a subunit of the proteasome's 19S regulatory particle. The variant increases RPT6 expression, which we show results in increased proteasome activity. Our results reveal the complex genetic architecture of proteasome activity and suggest that genetic influences on the proteasome may be an important source of variation in the many cellular and organismal traits shaped by protein degradation.
Collapse
Affiliation(s)
- Mahlon A. Collins
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randi Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank W. Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Schnell HM, Walsh RM, Rawson S, Hanna J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J Cell Sci 2022; 135:275096. [PMID: 35451017 PMCID: PMC9080555 DOI: 10.1242/jcs.259622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of cellular activity is mediated by large multisubunit complexes. However, many of these complexes are too complicated to assemble spontaneously. Instead, their biogenesis is facilitated by dedicated chaperone proteins, which are themselves excluded from the final product. This is the case for the proteasome, a ubiquitous and highly conserved cellular regulator that mediates most selective intracellular protein degradation in eukaryotes. The proteasome consists of two subcomplexes: the core particle (CP), where proteolysis occurs, and the regulatory particle (RP), which controls substrate access to the CP. Ten chaperones function in proteasome biogenesis. Here, we review the pathway of CP biogenesis, which requires five of these chaperones and proceeds through a highly ordered multistep pathway. We focus on recent advances in our understanding of CP assembly, with an emphasis on structural insights. This pathway of CP biogenesis represents one of the most dramatic examples of chaperone-mediated assembly and provides a paradigm for understanding how large multisubunit complexes can be produced.
Collapse
Affiliation(s)
- Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Richard M Walsh
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Duan J, Li W, Shu X, Yang B, He X, Guo X. Conserved Mitotic Phosphorylation of a Proteasome Subunit Regulates Cell Proliferation. Cells 2021; 10:3075. [PMID: 34831298 PMCID: PMC8620773 DOI: 10.3390/cells10113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists on the unassembled α5 subunit of the proteasome. The modified residue, α5-Ser16, is within a SP motif typically recognized by cyclin-dependent kinases (CDKs). Using a phospho-specific antibody generated against this site, we found that α5-S16 phosphorylation is mitosis-specific in both yeast and mammalian cells. Blocking this site with a S16A mutation caused growth defect and G2/M arrest of the cell cycle. α5-S16 phosphorylation depends on CDK1 activity and is highly abundant in some but not all mitotic cells. Immunoprecipitation and mass spectrometry (IP-MS) studies identified numerous proteins that could interact with phosphorylated α5, including PLK1, a key regulator of mitosis. α5-PLK1 interaction increased upon mitosis and could be facilitated by S16 phosphorylation. CDK1 activation downstream of PLK1 activity was delayed in S16A mutant cells, suggesting an important role of α5-S16 phosphorylation in regulating PLK1 and mitosis. These data have revealed an unappreciated function of "exo-proteasome" phosphorylation of a proteasome subunit and may bring new insights to our understanding of cell cycle control.
Collapse
Affiliation(s)
- Jinyuan Duan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Wenzhu Li
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
| | - Xin Shu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
6
|
Gutiérrez-Pérez P, Santillán EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M, Brandstetter M, Haselbach D, Cochella L. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. SCIENCE ADVANCES 2021; 7:eabh1434. [PMID: 34652942 PMCID: PMC8519577 DOI: 10.1126/sciadv.abh1434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.
Collapse
Affiliation(s)
- Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Emilio M. Santillán
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Anna Schrempf
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Mila Asparuhova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
7
|
Marshall RS, Gemperline DC, McLoughlin F, Book AJ, Hofmann K, Vierstra RD. An evolutionarily distinct chaperone promotes 20S proteasome α-ring assembly in plants. J Cell Sci 2020; 133:jcs249862. [PMID: 33033180 PMCID: PMC7657472 DOI: 10.1242/jcs.249862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and β-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for β-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Adam J Book
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
- Department of Genetics, University of Wisconsin, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
8
|
Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proc Natl Acad Sci U S A 2020; 117:28402-28411. [PMID: 33106420 PMCID: PMC7668169 DOI: 10.1073/pnas.2003524117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms including wake-sleep cycles are driven by molecular time cues generated by a self-sustaining transcriptional negative feedback loop. Among all clock proteins, PERIOD (PER) is considered the pacemaker protein because its rhythm of accumulation and nuclear entry generates the timing and duration of feedback inhibition. Here we provide a new understanding of how robust PER rhythms are generated: the collective action of interacting PER molecules, not a random mass action of individual molecules, allows compensation of spatial and temporal differences (or “noise”) of individual molecules. We also show that the collective PER rhythm requires healthy cytoplasmic trafficking, and that circadian sleep disorders can arise in such conditions as obesity, aging, and neurodegenerative disorders in which the cytoplasm becomes congested. The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER’s cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.
Collapse
|
9
|
Amatuni A, Shuster A, Adibekian A, Renata H. Concise Chemoenzymatic Total Synthesis and Identification of Cellular Targets of Cepafungin I. Cell Chem Biol 2020; 27:1318-1326.e18. [PMID: 32763140 DOI: 10.1016/j.chembiol.2020.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
The natural product cepafungin I was recently reported to be one of the most potent covalent inhibitors of the 20S proteasome core particle through a series of in vitro activity assays. Here, we report a short chemoenzymatic total synthesis of cepafungin I featuring the use of a regioselective enzymatic oxidation to prepare a key hydroxylated amino acid building block in a scalable fashion. The strategy developed herein enabled access to a chemoproteomic probe, which in turn revealed the exceptional selectivity and potency of cepafungin I toward the β2 and β5 subunits of the proteasome. Further structure-activity relationship studies suggest the key role of the hydroxyl group in the macrocycle and the identity of the lipid tail in modulating the potency of this natural product family. This study lays the groundwork for further medicinal chemistry exploration to fully realize the anticancer potential of cepafungin I.
Collapse
Affiliation(s)
- Alexander Amatuni
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Levray YS, Berhe AD, Osborne AR. Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum. Mol Biochem Parasitol 2020; 238:111292. [PMID: 32505674 DOI: 10.1016/j.molbiopara.2020.111292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
Defining protein-protein interactions is fundamental to the understanding of gene function. Protein-fragment complementation assays have been used for the analysis of protein-protein interactions in various organisms. The split-dihydrofolate reductase (DHFR) protein-fragment complementation assay utilises two complementary fragments of the enzyme fused to a pair of potentially interacting proteins. If these proteins interact, the DHFR fragments associate, fold into their native structure, reconstitute their function and confer resistance to antifolate drugs. We show that murine DHFR fragments fused to interacting proteins reconstitute a functional enzyme and confer resistance to the antifolate drug WR99210 in Plasmodium falciparum. These data demonstrate that the split-DHFR method can be used to detect in vivo protein-protein interactions in the parasite. Additionally, we show that split-DHFR fragments can be used as selection markers, permitting simultaneous selection of two plasmids in the presence of a single antifolate drug. Taken together, these experiments show that split-DHFR represents a valuable tool for the characterisation of Plasmodium protein function and genetic manipulation of the parasite.
Collapse
Affiliation(s)
- Yvette S Levray
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anne D Berhe
- Pomona College, 333 N. College Way, Claremont, CA 91711, United States
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom.
| |
Collapse
|
11
|
Hamazaki J, Murata S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci 2020; 21:ijms21103683. [PMID: 32456207 PMCID: PMC7279161 DOI: 10.3390/ijms21103683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.
Collapse
|
12
|
Nemec AA, Tomko RJ. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins. Yeast 2020; 37:327-335. [PMID: 32401365 DOI: 10.1002/yea.3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|