1
|
Kazemi M, Naghdi Sadeh R, Shekari Khaniani M, Rezazadeh M, Derakhshan SM, Ghafouri-Fard S. Identification of RN7SK LncRNA as a novel biomarker in Alzheimer's disease using bioinformatics and expression analysis. Sci Rep 2024; 14:31192. [PMID: 39732800 DOI: 10.1038/s41598-024-82490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative illness that accounts for the common type of dementia among adults over the age of 65. Despite extensive studies on the pathogenesis of the disease, early diagnosis of AD is still debatable. In this research, we performed bioinformatics approaches on the AD-related E-MTAB 6094 dataset to uncover new potential biomarkers for AD diagnosis. To achieve this, we performed in-depth in silico assays, including differentially expressed genes analysis, weighted gene co-expression network analyses, module-trait association analyses, gene ontology and pathway enrichment analyses, and hub genes network analyses. Finally, the expression of the identified candidate genes was evaluated in AD patients PBMC samples by qRT-PCR. Through computational analyses, we found that RN7SK LncRNA and its co-expressed genes of TNF, TNFAIP3, CCLT3, and FLT3 are from key genes in AD development that are associated with inflammatory responses. Our experimental validation revealed that RN7SK LncRNA and TNF were substantially up-regulated in AD samples (P = 0.006 and P = 0.023, respectively). Whereas, TNFAIP3 expression was significantly decreased (P = 0.016). However, the expression of CCL3 and FLT3 did not differ significantly between two groups (P = 0.396 and P = 0.521, respectively). In conclusion, in this study a novel LncRNA associated with AD pathogenesis were identified, which may provide new diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Naghdi Sadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Htet M, Estay-Olmos C, Hu L, Wu Y, Powers BE, Campbell CD, Ahmed MR, Hohman TJ, Schneider JA, Bennett DA, Menon V, De Jager PL, Kaas GA, Colbran RJ, Greer CB. HEXIM1 is correlated with Alzheimer's disease pathology and regulates immediate early gene dynamics in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615234. [PMID: 39386727 PMCID: PMC11463448 DOI: 10.1101/2024.09.27.615234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/12/2024]
Abstract
Impaired memory formation and recall is a distinguishing feature of Alzheimer's disease, and memory requires de novo gene transcription in neurons. Rapid and robust transcription of many genes is facilitated by the formation of a poised basal state, in which RNA polymerase II (RNAP2) has initiated transcription, but is paused just downstream of the gene promoter. Neuronal depolarization releases the paused RNAP2 to complete the synthesis of messenger RNA (mRNA) transcripts. Paused RNAP2 release is controlled by positive transcription elongation factor b (P-TEFb), which is sequestered into a larger inactive complex containing Hexamethylene bisacetamide inducible protein 1 (HEXIM1) under basal conditions. In this work, we find that neuronal expression of HEXIM1 mRNA is highly correlated with human Alzheimer's disease pathologies. Furthermore, P-TEFb regulation by HEXIM1 has a significant impact on the rapid induction of neuronal gene transcription, particularly in response to repeated depolarization. These data indicate that HEXIM1/P-TEFb has an important role in inducible gene transcription in neurons, and for setting and resetting the poised state that allows for the robust activation of genes necessary for synaptic plasticity. GRAPHICAL ABSTRACT
Collapse
|
3
|
Kao TL, Huang YC, Chen YH, Baumann P, Tseng CK. LARP3, LARP7, and MePCE are involved in the early stage of human telomerase RNA biogenesis. Nat Commun 2024; 15:5955. [PMID: 39009594 PMCID: PMC11250828 DOI: 10.1038/s41467-024-50422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.
Collapse
Affiliation(s)
- Tsai-Ling Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Huang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Peter Baumann
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Chi-Kang Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Palumbo RJ, Yang Y, Feigon J, Hanes SD. Catalytic activity of the Bin3/MePCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. Genetics 2024; 226:iyad203. [PMID: 37982586 PMCID: PMC10763541 DOI: 10.1093/genetics/iyad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Methylphosphate Capping Enzyme (MePCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MePCE in vitro, little is known about its functions in vivo, or what roles-if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MePCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MePCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MePCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Peng Q, Wang Y, Xiao Y, Chang H, Luo S, Wang D, Rong YS. Drosophila Amus and Bin3 methylases functionally replace mammalian MePCE for capping and the stabilization of U6 and 7SK snRNAs. SCIENCE ADVANCES 2023; 9:eadj9359. [PMID: 38100593 PMCID: PMC10848712 DOI: 10.1126/sciadv.adj9359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
U6 and 7SK snRNAs have a 5' cap, believed to be essential for their stability and maintained by mammalian MePCE or Drosophila Bin3 enzymes. Although both proteins are required for 7SK stability, loss of neither destabilizes U6, casting doubts on the function of capping U6. Here, we show that the Drosophila Amus protein, homologous to both proteins, is essential for U6 but not 7SK stability. The loss of U6 is rescued by the expression of an Amus-MePCE hybrid protein harboring the methyltransferase domain from MePCE, highlighting the conserved function of the two proteins as the U6 capping enzyme. Our investigations in human cells establish a dependence of both U6 and 7SK stability on MePCE, resolving a long-standing uncertainty. While uncovering a division of labor of Bin3/MePCE/Amus proteins, we found a "Bin3-Box" domain present only in enzymes associated with 7SK regulation. Targeted mutagenesis confirms its importance for Bin3 function, revealing a possible conserved element in 7SK but not U6 biology.
Collapse
Affiliation(s)
- Qiu Peng
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Ying Xiao
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Hua Chang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shishi Luo
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Danling Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
6
|
Palumbo RJ, Hanes SD. Catalytic activity of the Bin3/MEPCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543302. [PMID: 37333392 PMCID: PMC10274667 DOI: 10.1101/2023.06.01.543302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/20/2023]
Abstract
Methylphosphate Capping Enzyme (MEPCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MEPCE in vitro, little is known about its functions in vivo, or what roles- if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MEPCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MEPCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MEPCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| |
Collapse
|
7
|
Camara MB, Sobeh AM, Eichhorn CD. Progress in 7SK ribonucleoprotein structural biology. Front Mol Biosci 2023; 10:1154622. [PMID: 37051324 PMCID: PMC10083321 DOI: 10.3389/fmolb.2023.1154622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
Collapse
Affiliation(s)
- Momodou B. Camara
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Amr M. Sobeh
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
| | - Catherine D. Eichhorn
- Department of Chemistry, University of Nebraska, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, United States
- *Correspondence: Catherine D. Eichhorn,
| |
Collapse
|
8
|
Al-Mamari W, Idris AB, Al-Thihli K, Abdulrahim R, Jalees S, Al-Jabri M, Gabr A, Al Murshedi F, Al Kindy A, Al-Hadabi I, Bruwer Z, Islam MM, Alsayegh A. Applying whole exome sequencing in a consanguineous population with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 69:190-200. [PMID: 37025335 PMCID: PMC10071987 DOI: 10.1080/20473869.2021.1937000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
This study aimed to systematically assess the impact of clinical and demographic variables on the diagnostic yield of Whole Exome Sequencing (WES) when applied to children with Autism Spectrum Disorder (ASD) from a consanguineous population. Ninety-seven children were included in the analysis, 63% were male and 37% were females. 77.3% had a suspected syndromic aetiology of which 68% had co-existent central nervous system (CNS) clinical features, while 69% had other systems involved. The diagnostic yield of WES in our cohort with ASD was 34%. Children with seizures were more likely to have positive WES results (46% vs. 31%, p = 0.042). Probands with suspected syndromic ASD aetiology showed no significant differential impact on the diagnostic yield of WES.
Collapse
Affiliation(s)
- Watfa Al-Mamari
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
- Correspondence to: Watfa Al-Mamari, Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Ahmed B. Idris
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Reem Abdulrahim
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Saquib Jalees
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Muna Al-Jabri
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahlam Gabr
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Adila Al Kindy
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Intisar Al-Hadabi
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandrè Bruwer
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - M. Mazharul Islam
- Department of Statistics, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Abeer Alsayegh
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
9
|
Needhamsen M, Khoonsari PE, Zheleznyakova GY, Piket E, Hagemann-Jensen M, Han Y, Gierlich J, Ekman D, Jagodic M. Integration of small RNAs from plasma and cerebrospinal fluid for classification of multiple sclerosis. Front Genet 2022; 13:1042483. [PMID: 36468035 PMCID: PMC9713411 DOI: 10.3389/fgene.2022.1042483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune, neurological disease, commonly presenting with a relapsing-remitting form, that later converts to a secondary progressive stage, referred to as RRMS and SPMS, respectively. Early treatment slows disease progression, hence, accurate and early diagnosis is crucial. Recent advances in large-scale data processing and analysis have progressed molecular biomarker development. Here, we focus on small RNA data derived from cell-free cerebrospinal fluid (CSF), cerebrospinal fluid cells, plasma and peripheral blood mononuclear cells as well as CSF cell methylome data, from people with RRMS (n = 20), clinically/radiologically isolated syndrome (CIS/RIS, n = 2) and neurological disease controls (n = 14). We applied multiple co-inertia analysis (MCIA), an unsupervised and thereby unbiased, multivariate method for simultaneous data integration and found that the top latent variable classifies RRMS status with an Area Under the Receiver Operating Characteristics (AUROC) score of 0.82. Variable selection based on Lasso regression reduced features to 44, derived from the small RNAs from plasma (20), CSF cells (8) and cell-free CSF (16), with a marginal reduction in AUROC to 0.79. Samples from SPMS patients (n = 6) were subsequently projected on the latent space and differed significantly from RRMS and controls. On contrary, we found no differences between relapse and remission or between inflammatory and non-inflammatory disease controls, suggesting that the latent variable is not prone to inflammatory signals alone, but could be MS-specific. Hence, we here showcase that integration of small RNAs from plasma and CSF can be utilized to distinguish RRMS from SPMS and neurological disease controls.
Collapse
Affiliation(s)
- Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Galina Yurevna Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jannik Gierlich
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Ekman
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
11
|
Cordsmeier A, Rinkel S, Jeninga M, Schulze-Luehrmann J, Ölke M, Schmid B, Hasler D, Meister G, Häcker G, Petter M, Beare PA, Lührmann A. The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription. PLoS Pathog 2022; 18:e1010266. [PMID: 35134097 PMCID: PMC8824381 DOI: 10.1371/journal.ppat.1010266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection. For intracellular replication, Coxiella burnetii depends on a functional type IV secretion system, which is utilized to inject ~150 virulence factors, so called effector proteins, into the host cell cytosol. Activities have only been established for few of them. These effector proteins interfere with vesicular trafficking, autophagy, lipid metabolism, apoptosis, and transcription by binding and manipulating the activity of host cell proteins. Here, we report that the C. burnetii T4SS effector protein AnkG (CBU0781, Q83DF6) binds to the host cell DExD box helicase 21 (DDX21) as well as to several host cell RNAs, including the small regulatory 7SK RNA, which is an important regulator of the positive elongation factor b (pTEFb). AnkG interferes with the function of the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, leading to significant changes in host cell transcription and ensuring host cell survival. AnkG activity is essential for efficient intracellular replication of C. burnetii and its ability to inhibit apoptosis. In summary, we identified a novel process by which a bacterial effector protein manipulates the host cell for its own benefit.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Rinkel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Jeninga
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Briese M, Sendtner M. Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. Bioessays 2021; 43:e2100092. [PMID: 34050960 DOI: 10.1002/bies.202100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.
Collapse
Affiliation(s)
- Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
13
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Lee S, Liu H, Hill R, Chen C, Hong X, Crawford F, Kingsley M, Zhang Q, Liu X, Chen Z, Lengeling A, Bernt KM, Marrack P, Kappler J, Zhou Q, Li CY, Xue Y, Hansen K, Zhang G. JMJD6 cleaves MePCE to release positive transcription elongation factor b (P-TEFb) in higher eukaryotes. eLife 2020; 9:53930. [PMID: 32048991 PMCID: PMC7064345 DOI: 10.7554/elife.53930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
More than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II CTD by positive transcription elongation factor b (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II CTD remains unknown. In this report, we utilize mouse and human models to reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)’s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II CTD by disrupting the 7SK snRNP complex. In animals, an enzyme known as RNA polymerase II (Pol II for short) is a key element of the transcription process, whereby the genetic information contained in DNA is turned into messenger RNA molecules in the cells, which can then be translated to proteins. To perform this task, Pol II needs to be activated by a complex of proteins called P-TEFb; however, P-TEFb is usually found in an inactive form held by another group of proteins. Yet, it is unclear how P-TEFb is released and allowed to activate Pol II. Scientists have speculated that another protein called JMJD6 (Jumonji domain-containing 6) is important for P-TEFb to activate Pol II. Various roles for JMJD6 have been proposed, but its exact purpose remains unclear. Recently, two enzymes closely related to JMJD6 were found to be able to make precise cuts in other proteins; Lee, Liu et al. therefore wanted to test whether this is also true of JMJD6. Experiments using purified JMJD6 showed that it could make a cut in an enzyme called MePCE, which belongs to the group of proteins that hold P-TEFb in its inactive form. Lee, Liu et al. then tested the relationships between these proteins in living human and mouse cells. The levels of activated Pol II were lower in cells without JMJD6 and higher in those without MePCE. Together, the results suggest that JMJD6 cuts MePCE to release P-TEFb, which then activates Pol II. JMJD6 appears to know where to cut by following a specific pattern of elements in the structure of MePCE. When MePCE was mutated so that the pattern changed, JMJD6 was unable to cut it. These results suggest that JMJD6 and related enzymes belong to a new family of proteases, the molecular scissors that can cleave other proteins. The molecules that regulate transcription often are major drug targets, for example in the fight against cancer. Ultimately, understanding the role of JMJD6 might help to identify new avenues for cancer drug development.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Ryan Hill
- Department of Genetics and Biochemistry, School of Medicine, University of Colorado, Aurora, United States
| | - Chunjing Chen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Fran Crawford
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Molly Kingsley
- Department of Pediatrics, Children Hospital, University of Colorado, Aurora, United States.,Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Qianqian Zhang
- State Key Laboratory of Agrobiotechnology, China Agriculture University, Beijing, China
| | - Xinjian Liu
- Department of Dermatology, Duke University, Durham, United States
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agriculture University, Beijing, China
| | | | - Kathrin Maria Bernt
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - John Kappler
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| | - Qiang Zhou
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University, Durham, United States
| | - Yuhua Xue
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Kirk Hansen
- Department of Genetics and Biochemistry, School of Medicine, University of Colorado, Aurora, United States
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, United States
| |
Collapse
|