1
|
Wang XY, Zhang WY, Hu YJ, Song HY, Zeeshan A, Ge C, Liu SB. Silver dendrite metasurface SERS substrates prepared by photoreduction method for perfluorooctanoic acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123932. [PMID: 38266606 DOI: 10.1016/j.saa.2024.123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Perfluorooctanoic acid (PFOA), a novel organic pollutant, has been shown to be toxic, persistent, bioaccumulative, long-range transportable, and globally prevalent. This article is based on surface enhanced Raman scattering (SERS) spectroscopy analysis technology. The monolayer of SiO2 was prepared by chemical reduction etching self-assembly method and silver dendrites were grown on it, thus forming the SERS substrate with silver dendrite Metasurface structure with Raman detection enhancement factor up to 2.32 × 105. The prepared silver dendrite Metasurface SERS substrate was applied to the qualitative and quantitative detection of PFOA, with a quantitative detection limit of 15.89 ppb. The results of this paper provide a new, simple, and quick method for the detection of PFOA in the environment.
Collapse
Affiliation(s)
- Xing-Yue Wang
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| | - Wan-Yun Zhang
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Jin Hu
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| | - Hai-Ying Song
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China.
| | - Abbas Zeeshan
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| | - Chao Ge
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| | - Shi-Bing Liu
- Strong-field and Ultrafast Photonics Laboratory, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Kaja S, Nag A. Ag-Au-Cu Trimetallic Alloy Microflower: A Highly Sensitive SERS Substrate for Detection of Low Raman Scattering Cross-Section Thiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16562-16573. [PMID: 37943256 DOI: 10.1021/acs.langmuir.3c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Trimetallic Ag-Au-Cu alloy microflowers (MFs) with various surface compositions were synthesized on a glass coverslip and used as efficient surface-enhanced Raman spectroscopy (SERS) substrates for highly sensitive label-free detection of smaller Raman scattering cross-section molecules, namely, L-cysteine and toxic thiophenols. MFs of different compositions were synthesized via appropriate mixing of metal-alkyl ammonium halide precursors followed by a single-step thermolysis at 350 °C. While the Ag percentage was kept constant at 90% for all the substrates, the composition of Au and Cu was varied between 1 and 9% sequentially. The synthesized MFs were thoroughly characterized by using field emission scanning electron microscopy (FE-SEM), wide-angle X-ray scattering, X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence techniques. FE-SEM studies revealed that the MFs were present throughout the substrate, and the average size varied from 20 to 40 μm. XPS studies showed that the top surface of the alloy substrates was rich in either Au or Cu atoms, while Ag remained underneath. The performance of the trimetallic MFs as SERS substrates was evaluated using Rhodamine 6G as a probe molecule, which showed that the MFs with Ag-Au-Cu compositions 90-7-3 and 90-3-7 were found to be the best and of equal SERS efficiency. The SERS enhancement factor (EF) of both these MFs was found to be the same, approximately 9 × 107, when calculated using 1,2,3-benzatriazole as the probe molecule. Between the two, the trimetallic substrate with a higher Au percentage (Ag-Au-Cu as 90-7-3) was used for the sensitive SERS-based detection of thiols to exploit the strong Au-S binding interaction. By virtue of the high EF of the substrate, the inherently low Raman scattering cross-sections of the probe molecules were greatly enhanced in SERS mode. The 'limit of quantification (LOQ)' values were found to be 1 nM for aliphatic L-Cysteine and 1-0.1 pM for aromatic thiols using the trimetallic SERS sensor.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
3
|
Kochylas I, Dimitriou A, Apostolaki MA, Skoulikidou MC, Likodimos V, Gardelis S, Papanikolaou N. Enhanced Photoluminescence of R6G Dyes from Metal Decorated Silicon Nanowires Fabricated through Metal Assisted Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041386. [PMID: 36837016 PMCID: PMC9963757 DOI: 10.3390/ma16041386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/17/2023]
Abstract
In this study, we developed active substrates consisting of Ag-decorated silicon nanowires on a Si substrate using a single-step Metal Assisted Chemical Etching (MACE) process, and evaluated their performance in the identification of low concentrations of Rhodamine 6G using surface-enhanced photoluminescence spectroscopy. Different structures with Ag-aggregates as well as Ag-dendrites were fabricated and studied depending on the etching parameters. Moreover, the addition of Au nanoparticles by simple drop-casting on the MACE-treated surfaces can enhance the photoluminescence significantly, and the structures have shown a Limit of Detection of Rhodamine 6G down to 10-12 M for the case of the Ag-dendrites enriched with Au nanoparticles.
Collapse
Affiliation(s)
- Ioannis Kochylas
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Anastasios Dimitriou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
| | - Maria-Athina Apostolaki
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | | | - Vlassios Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Nikolaos Papanikolaou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece
- Correspondence:
| |
Collapse
|
4
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Singh SP, Chandra P. Nano-Engineered Surface Comprising Metallic Dendrites for Biomolecular Analysis in Clinical Perspective. BIOSENSORS 2022; 12:1062. [PMID: 36551029 PMCID: PMC9775260 DOI: 10.3390/bios12121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 09/28/2023]
Abstract
Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Daphika S. Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Surinder P. Singh
- CSIR—National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Yang R, Li Y, Zheng J, Qiu J, Song J, Xu F, Qin B. A Novel Method for Carbendazim High-Sensitivity Detection Based on the Combination of Metamaterial Sensor and Machine Learning. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6093. [PMID: 36079475 PMCID: PMC9457567 DOI: 10.3390/ma15176093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Benzimidazole fungicide residue in food products poses a risk to consumer health. Due to its localized electric-field enhancement and high-quality factor value, the metamaterial sensor is appropriate for applications regarding food safety detection. However, the previous detection method based on the metamaterial sensor only considered the resonance dip shift. It neglected other information contained in the spectrum. In this study, we proposed a method for highly sensitive detection of benzimidazole fungicide using a combination of a metamaterial sensor and mean shift machine learning method. The unit cell of the metamaterial sensor contained a cut wire and two split-ring resonances. Mean shift, an unsupervised machine learning method, was employed to analyze the THz spectrum. The experiment results show that our proposed method could detect carbendazim concentrations as low as 0.5 mg/L. The detection sensitivity was enhanced 200 times compared to that achieved using the metamaterial sensor only. Our present work demonstrates a potential application of combining a metamaterial sensor and mean shift in benzimidazole fungicide residue detection.
Collapse
Affiliation(s)
- Ruizhao Yang
- Key Laboratory of Complex System Optimization and Big Data Processing, Guangxi Colleges and Universities, Yulin Normal University, Yulin 537000, China
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Yun Li
- School of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Jincun Zheng
- Key Laboratory of Complex System Optimization and Big Data Processing, Guangxi Colleges and Universities, Yulin Normal University, Yulin 537000, China
- Research Center of Intelligent Information and Communication Technology, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Jie Qiu
- School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China
| | - Jinwen Song
- Research Center of Intelligent Information and Communication Technology, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Fengxia Xu
- Research Center of Intelligent Information and Communication Technology, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Binyi Qin
- Key Laboratory of Complex System Optimization and Big Data Processing, Guangxi Colleges and Universities, Yulin Normal University, Yulin 537000, China
- Research Center of Intelligent Information and Communication Technology, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
6
|
Numan A, Singh PS, Alam A, Khalid M, Li L, Singh S. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents. ACS OMEGA 2022; 7:27079-27089. [PMID: 35967060 PMCID: PMC9366967 DOI: 10.1021/acsomega.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Efficient and simple detection of chemical warfare agents (CWAs) is an essential step in minimizing the potentially lethal consequences of chemical weapons. CWAs are a family of organic chemicals that are used as chemical weapons because of their enormous severity and lethal effects when faced with unforeseen challenges. To stop the spread of CWAs, it is critical to develop a platform that detects them in a sensitive, timely, selective, and minimally invasive manner. Rapid advances in the demand for on-site sensors, metal nanoparticles, and biomarker identification for CWAs have made it possible to use fluorescence as a precise real-time and point-of-care (POCT) testing technique. For POCT-based applications, the new capabilities of micro- and nanomotors offer enormous prospects. In recent decades, significant progress has been made in the design of fluorescent sensors and the further development of noble metal nanoparticles for the detection of organophosphorus CWAs, as described in this review. Through this work, recent attempts to fabricate sensors that can detect organophosphorus CWAs through changes in their fluorescence properties have been summarized. Finally, an integrated outlook on how noble metal nanoparticles could be used to develop smart sensors for organophosphorus CWAs that communicate with and control electronic devices to monitor and improve the health of individuals.
Collapse
Affiliation(s)
- Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Prabh Simran Singh
- Department
of Pharmaceutical Chemistry, Khalsa College
of Pharmacy, Amritsar 143001, Punjab, India
| | - Aftab Alam
- College
of Pharmacy, Prince Sattam Bin Abdulaziz
University, Al-Kharj 16278, Kingdom of Saudi Arabia
| | - Mohammad Khalid
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Lijie Li
- College
of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Sima Singh
- IES
Institute of Pharmacy, IES University, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| |
Collapse
|
7
|
Thanh Nguyen D, Phuong Nguyen L, Duc Luu P, Quoc Vu T, Quynh Nguyen H, Phat Dao T, Nhut Pham T, Quoc Tran T. Surface-enhanced Raman scattering (SERS) from low-cost silver nanoparticle-decorated cicada wing substrates for rapid detection of difenoconazole in potato. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121117. [PMID: 35364411 DOI: 10.1016/j.saa.2022.121117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Potato is one of the most important food crops worldwide in terms of human consumption. However, potato farmers employ a variety of pesticides to protect crops from harmful insects and illnesses, and difenoconazole is a commonly used one that has severe effects on human health and the environment. Therefore, detecting difenoconazole quickly and correctly is critical. In this work, we fabricated AgNPs/cicada wing substrates using natural cicada segments, decorated with silver nanoparticles for surface-enhanced Raman scattering (SERS) measurements to detect trace amounts of difenoconazole in potatoes. Results indicated that a linear relationship with the coefficient of detection (R2) of 0.987 and the detection limit (LOD) of 0.016 ppm was observed by targeting a distinctive peak at 808 cm-1 and logarithmic difenoconazole concentrations of 0.1 to 100 ppm. In addition, difenoconazole LODs in potatoes were 63 μg/kg, lower than those specified by the EU (0.1 mg/kg) and Vietnam (4 mg/kg) utilizing this new technique. Therefore, this proposed SERS method could be used to detect difenoconazole in potatoes at trace levels.
Collapse
Affiliation(s)
- Duong Thanh Nguyen
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam.
| | - Linh Phuong Nguyen
- Hanoi Medical University, 1 Ton That Tung, Dong Da district, Hanoi, Vietnam
| | - Phuong Duc Luu
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam
| | - Thai Quoc Vu
- Intitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
| | - Hoa Quynh Nguyen
- Intitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam
| | - Tan Phat Dao
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tri Nhut Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - Toan Quoc Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam; Intitute of Natuaral Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 100000 Hanoi, Vietnam.
| |
Collapse
|
8
|
Dzik S, Mituniewicz T, Beisenov A. Efficacy of a Biocidal Paint in Controlling Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) and Improving the Quality of Air and Litter in Poultry Houses. Animals (Basel) 2022; 12:1264. [PMID: 35625110 PMCID: PMC9137729 DOI: 10.3390/ani12101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Effective disinfection and disinsection are the keys to successful operation of modern poultry farms and the safety of poultry products. The cleaning and disinfection of poultry houses are important aspects of farm hygiene management. The correct execution of all steps of cleaning, disinfection, and disinsection procedures and the use of appropriate products are crucial for the prevention and control of zoonotic and animal diseases. In this study it was assumed that a water-based slow-release biocidal paint could be useful in controlling insect pests such as Alphitobius diaperinus and reducing microbiological contamination of air and litter in poultry houses and have a beneficial effect on microclimate in poultry houses. Therefore, the locations of A. diaperinus in the poultry houses, the microbiological contamination of air and litter, as well as the microclimatic conditions in the houses and the physicochemical parameters of the litter were evaluated. The results suggest that the tested biocidal paint could be an effective alternative to other insecticides and disinfectants. Additionally, the research is of a practical nature and may be very useful for poultry producers in controlling A. diaperinus populations and maintaining proper hygiene in poultry houses. Further research is needed.
Collapse
Affiliation(s)
- Sara Dzik
- Department of Animal and Environmental Hygiene, University of Warmia and Mazury in Olsztyn, 5 Oczapowski Street, 10-719 Olsztyn, Poland;
| | - Tomasz Mituniewicz
- Department of Animal and Environmental Hygiene, University of Warmia and Mazury in Olsztyn, 5 Oczapowski Street, 10-719 Olsztyn, Poland;
| | - Ariphzan Beisenov
- Department of Technology and Biological Resources, Kazakh National Agrarian Research University, 8 Abai Avenue, Almaty 050010, Kazakhstan;
| |
Collapse
|
9
|
He G, Han X, Cao S, Cui K, Tian Q, Zhang J. Long Spiky Au-Ag Nanostar Based Fiber Probe for Surface Enhanced Raman Spectroscopy. MATERIALS 2022; 15:ma15041498. [PMID: 35208039 PMCID: PMC8876936 DOI: 10.3390/ma15041498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
The detection performances of noble metal-based surface enhanced Raman spectroscopy (SERS) devices are determined by the compositions and geometries of the metal nanostructures, as well as the substrates. In the current study, long spiky Au-Ag alloy nanostars were synthesized, and both core diameters and spike lengths were controlled by Lauryl sulfobetaine concentrations (as the nanostructure growth skeleton). The long spiky star geometries were confirmed by transmission electron micrograph images. Elements energy dispersive spectrometer mapping confirmed that Au and Ag elements were inhomogeneously distributed in the nanostructures and demonstrated a higher Ag content at surface for potential better SERS performance. Selected synthesized spiky nanostars were uniformly assembled on multi-mode silica fiber for probe fabrication by silanization. The SERS performance were characterized using crystal violet (CV) and rhodamine 6G (R6G) as analyte molecules. The lowest detection limit could reach as low as 10-8 M, with a 6.23 × 106 enhancement factor, and the relationship between analyte concentrations and Raman intensities was linear for both CV and R6G, which indicated the potential qualitative and quantitative molecule detection applications. Moreover, the fiber probes also showed good reproducibility and stability in the ambient atmosphere.
Collapse
Affiliation(s)
- Guangyuan He
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
| | - Xiaoyu Han
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
| | - Shiyi Cao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
- International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kaimin Cui
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qihang Tian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
| | - Jihong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (G.H.); (X.H.); (S.C.); (K.C.); (Q.T.)
- Correspondence: ; Tel.: +86-27-8766-9729; Fax: +86-27-8766-9729
| |
Collapse
|
10
|
Kaja S, Nag A. Bimetallic Ag-Cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13027-13037. [PMID: 34699226 DOI: 10.1021/acs.langmuir.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bimetallic Ag-Cu alloy microflowers with tunable surface compositions were fabricated as surface-enhanced Raman spectroscopy (SERS) substrates with a limit of detection in the zeptomolar range for the analyte molecule rhodamine 6G (R6G). The substrates were prepared on a glass coverslip through a bottom-up strategy by simple thermolysis of metal-alkyl ammonium halide precursors. The reaction temperature and composition of the alloy were varied sequentially to find out the maximum SERS efficiency from the substrates. While UV-vis spectroscopy was employed to characterize the optical properties of the substrates, the bulk and surface compositions of the microflowers were determined using energy-dispersive X-ray fluorescence (ED-XRF) and X-ray photoelectron spectroscopy (XPS) techniques, respectively. Also, the structural and morphological characterizations of the substrates were performed by X-ray diffraction and scanning electron microscope (SEM), respectively. For alloys, the ED-XRF studies confirmed that the bulk compositions matched with the feed ratio, while the surface compositions were found to be rich in copper in the form of both elementary copper and copper oxide, as revealed by XPS studies. From the efficiency studies for different compositions prepared, it was found that 10% Ag-Cu alloy microflowers produced the maximum SERS intensity for resonant R6G molecules as probes. In fact, R6G evidences a 50-fold enhancement in SERS spectra with 10% alloy microflowers as against pure Ag microflowers. Using 1, 2, 3-benzotriazole as a nonresonant Raman probe, uniform enhancement factors on the order of ≈108 were achieved from different parts of the 10% Ag-Cu alloy microflower. The same substrate showed excellent Raman response for detecting R6G at very low concentrations such as 10 zM, leading to detection and analysis of SERS spectra from a single R6G molecule.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
11
|
Jara N, Milán NS, Rahman A, Mouheb L, Boffito DC, Jeffryes C, Dahoumane SA. Photochemical Synthesis of Gold and Silver Nanoparticles-A Review. Molecules 2021; 26:4585. [PMID: 34361738 PMCID: PMC8348930 DOI: 10.3390/molecules26154585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.
Collapse
Affiliation(s)
- Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Nataly S. Milán
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| | - Clayton Jeffryes
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
- Center for Advances in Water and Air Quality, The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| |
Collapse
|
12
|
Yang M, Chen X, Wang Z, Zhu Y, Pan S, Chen K, Wang Y, Zheng J. Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1895. [PMID: 34443724 PMCID: PMC8398172 DOI: 10.3390/nano11081895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Metal nanostructured materials, with many excellent and unique physical and mechanical properties compared to macroscopic bulk materials, have been widely used in the fields of electronics, bioimaging, sensing, photonics, biomimetic biology, information, and energy storage. It is worthy of noting that most of these applications require the use of nanostructured metals with specific controlled properties, which are significantly dependent on a series of physical parameters of its characteristic size, geometry, composition, and structure. Therefore, research on low-cost preparation of metal nanostructures and controlling of their characteristic sizes and geometric shapes are the keys to their development in different application fields. The preparation methods, physical and chemical properties, and application progress of metallic nanostructures are reviewed, and the methods for characterizing metal nanostructures are summarized. Finally, the future development of metallic nanostructure materials is explored.
Collapse
Affiliation(s)
- Ming Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Xiaohua Chen
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zidong Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Yuzhi Zhu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Shiwei Pan
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Kaixuan Chen
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Yanlin Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Jiaqi Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| |
Collapse
|
13
|
Zhao F, Wang X, Zhang Y, Lu X, Xie H, Xu B, Ye W, Ni W. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering. NANOTECHNOLOGY 2020; 31:295601. [PMID: 32217813 DOI: 10.1088/1361-6528/ab8400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of metal nanocrystals is able to create a gap of sub-nanometer distance for concentrating incoming light by the strong coupling of surface plasmon resonance, known as a 'hot spot'. Although the plasmonic property of silver is better than other metals in the visible range, the superior Raman enhancement of silver compared to gold is still under debate. To provide direct evidence, in this work, we studied the silver adsorption on assembled gold nanorods (AuNRs) using in situ surface-enhanced Raman scattering (SERS) measurements. The self-assembled AuNR multimers were used as the SERS substrate, where the 4-mercaptophenol (MPh) molecules in our experiment played dual roles as both probe molecules for the Raman scattering and linking molecules for the AuNR assembly in a basic environment. Silver atoms were adsorbed on the surface of gold nanorod assemblies by reduction of Ag+ anions. The stability of the adsorbed silver was guaranteed by the basic environment. We monitored the SERS signal during the silver adsorption with a home-built in situ Raman spectroscope, which was synchronized by recording the UV-vis absorption spectra of the reaction solution to instantly quantify the plasmonic effect of the silver adsorption. Although a minor change was found in the plasmonic resonance wavelength or intensity, the measured SERS signal at specific modes faced a sudden increase by 2.1 folds during the silver adsorption. The finite element method (FEM) simulation confirmed that the silver adsorption corresponding to the plasmonic resonance variation gave little change to the electric field enhancement. We attributed the mode-specific enhancement mechanism of the adsorption of silver to the chemical enhancement from charge transfer (CT) for targeting molecules with a specific orientation. Our findings provided new insights to construct SERS substrates with higher enhancement factor (EF), which hopefully would encourage new applications in the field of surface-enhanced optical spectroscopies.
Collapse
Affiliation(s)
- Fei Zhao
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water.
Collapse
|