1
|
Chithanathan K, Jürgenson M, Ducena K, Remm A, Kask K, Rebane A, Tian L, Zharkovsky A. Elocalcitol mitigates high-fat diet-induced microglial senescence via miR-146a modulation. Immun Ageing 2024; 21:82. [PMID: 39578804 PMCID: PMC11583547 DOI: 10.1186/s12979-024-00485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in regulating inflammation and cellular senescence. Among them, miR-146a has emerged as a key modulator of inflammation, but its role in obesity-induced senescence remains unexplored. This study investigates the involvement of miR-146a in high-fat diet (HFD)-induced hypothalamic senescence and in protective effects of elocalcitol (Elo), a non-hypercalcemic, fluorinated vitamin D analog on HFD-induced senescence. RESULTS Wild-type (WT) HFD-fed mice exhibited increased body weight, impaired locomotor activity, and cognitive decline compared to low-fat diet (LFD) controls. In the brain, HFD induced senescence markers (p16, p21), β-galactosidase activity (β-gal) of microglia, and increased expression of senescence associated secretory phenotype (SASP) cytokines (Il1b, Il18, Tnf, Il6) in activated hypothalamic microglia. In the liver, increased p21 and SASP cytokines were detected, although p16 and β-gal levels remained unchanged. Importantly, miR-146a expression was significantly downregulated in the hypothalamus following HFD exposure in WT mice, while miR-146a knockout (Mir146a-/-) mice subjected to HFD showed augmented hypothalamic senescence characterized by higher levels of p16, p21, and β-gal + microglial cells as compared to WT mice. The SASP profile remained similar between Mir146a-/- HFD and WT HFD mice. Among miR-146a target genes, smad4 was upregulated the hypothalamus of HFD-fed mice, with a more pronounced increase in the hypothalamus of HFD-fed Mir146a-/- mice. Further, treatment with Elo upregulated miR-146a expression in both the hypothalamus and the liver, lowered body weight and improved cognitive function, while reducing senescence markers and SASP cytokines in WT HFD mice. These effects were absent in Mir146a-/- HFD mice when treated with Elo, indicating the dependence of Elo's therapeutic efficacy on miR-146a. CONCLUSION Elocalcitol prevents development of senescence in microglia via modulation of miR-146a expression, while miR-146a provides protection against HFD-induced cellular senescence in the hypothalamus most probably via inhibition of TGF/Smad4 pathway. These findings highlight Elo and miR-146a as promising therapeutic candidates for ameliorating obesity-related neuroinflammation and senescence.
Collapse
Affiliation(s)
- Keerthana Chithanathan
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrina Ducena
- Institute of Science and Technology, University of Tartu, Tartu, Estonia
| | - Anu Remm
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalev Kask
- Adge Pharmaceuticals Inc, Mountain View, CA, USA
| | - Ana Rebane
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Skeletal Muscle-Derived Exosomal miR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARγ Signaling. Int J Mol Sci 2023; 24:ijms24054561. [PMID: 36901991 PMCID: PMC10003660 DOI: 10.3390/ijms24054561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.
Collapse
|
3
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
4
|
Abdelhameed RFA, Ibrahim AK, Elfaky MA, Habib ES, Mahamed MI, Mehanna ET, Darwish KM, Khodeer DM, Ahmed SA, Elhady SS. Antioxidant and Anti-Inflammatory Activity of Cynanchum acutum L. Isolated Flavonoids Using Experimentally Induced Type 2 Diabetes Mellitus: Biological and In Silico Investigation for NF-κB Pathway/miR-146a Expression Modulation. Antioxidants (Basel) 2021; 10:antiox10111713. [PMID: 34829584 PMCID: PMC8615122 DOI: 10.3390/antiox10111713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cynanchum acutum L. is a climbing vine that belongs to the family Apocynaceae. Using different chromatographic techniques, seven compounds were isolated from the methanolic extract of the plant. The isolated compounds include six flavonoid compounds identified as rutin (1), quercetin-3-O-neohesperidoside (2), quercetin-3-O-β-galactoside (3), isoquercitrin (4), quercetin (5), and kaempferol 3-O-β-glucoside (6), in addition to a coumarin, scopoletin (7). The structures of the compounds were elucidated based on 1D NMR spectroscopy and high-resolution mass spectrometry (HR-MS), and by comparison with data reported in the literature. The first five compounds were selected for in vivo investigation of their anti-inflammatory and antioxidant properties in a rat model of type 2 diabetes. All tested compounds significantly reduced oxidative stress and increased erythrocyte lysate levels of antioxidant enzymes, along with the amelioration of the serum levels of inflammatory markers. Upregulation of miR-146a expression and downregulation of nuclear factor kappa B (NF-κB) expression were detected in the liver and adipose tissue of rats treated with the isolated flavonoids. Results from the biological investigation and those from the validated molecular modeling approach on two biological targets of the NF-κB pathway managed to highlight the superior anti-inflammatory activity of quercetin-3-O-galactoside (3) and quercetin (5), as compared to other bioactive metabolites.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
- Correspondence: (A.K.I.); (E.T.M.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Mayada I. Mahamed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.I.); (E.T.M.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina M. Khodeer
- Department of Pharmacology, and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.I.M.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.E.); (S.S.E.)
| |
Collapse
|
5
|
Wu H, Wang Y, Yao Q, Fan L, Meng L, Zheng N, Li H, Wang J. Alkaline phosphatase attenuates LPS-induced liver injury by regulating the miR-146a-related inflammatory pathway. Int Immunopharmacol 2021; 101:108149. [PMID: 34634739 DOI: 10.1016/j.intimp.2021.108149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS) can remain in dairy products after the sterilization of milk powder and may pose a threat to the health of infants and young children. There is a large amount of alkaline phosphatase (ALP) in raw milk, which can remove the phosphate bond of LPS, thus, detoxifying it. ALP is regarded as an indicator of the success of milk sterilization due to its strong heat resistance. ALP can alleviate the toxicity of LPS in enteritis and nephritis models, but the mechanism by which oral-intake of ALP protects liver tissue from LPS stimulation is unclear. In this study, an in vivo acute mouse liver injury model was induced by C. sakazakii LPS (200 μg/kg) and used to verify the protective mechanism of ALP (200 U/kg) on mice livers. The related pathways were also verified by in vitro cell culture. Enzyme linked immunosorbent assays (ELISAs), quantitative reverse transcription PCR (RT-qPCR) and western blotting were used to detect the levels of inflammatory factors at the protein level and RNA level, and to confirm the inflammation of liver tissue caused by LPS. ALP was found to alleviate acute liver injury in vitro by activating miR-146a. We found that ALP could up-regulate the level of miR146a and subsequently alleviates the expression of TLR4, TNF-α, matured IL-1β, and NF-κB in mouse liver tissue and hepatocytes; thus, reducing liver inflammation. Herein, we demonstrated for the first time that oral-intake of ALP protected liver tissue by up-regulating the expression of miR-146a and alleviating inflammatory reactions; thus, providing a research basis for the proper processing of milk. This study also suggests that producers should improve the awareness of the protective effects of bioactive proteins in raw milk.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianqian Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Luna C, Parker M, Challa P, Gonzalez P. Long-Term Decrease of Intraocular Pressure in Rats by Viral Delivery of miR-146a. Transl Vis Sci Technol 2021; 10:14. [PMID: 34254987 PMCID: PMC8287046 DOI: 10.1167/tvst.10.8.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate the effects of miR-146a in trabecular meshwork (TM) cells and on intraocular pressure (IOP) in vivo via viral delivery of miR-146a to the anterior chamber of rat eyes. Methods Human TM cells were transfected with miR-146 mimic or inhibitor. Some cells from each group were then subjected to cyclic mechanical stress (CMS). Other cells from each group had no force applied. Gene expression was then analyzed by quantitative polymerase chain reaction (qPCR). Replication-deficient adenovirus and lentivirus expressing miR-146a were inoculated into the anterior segment of Brown Norway rat eyes. IOP was monitored by rebound tonometry, visual acuity was evaluated by optokinetic tracking (OKT), and inflammation markers in the anterior segment were examined by slit-lamp, qPCR, and semi-thin sections. Results miR-146 affected the expression of genes potentially involved in outflow homeostasis at basal levels and under CMS. Both lentiviral and adenoviral vectors expressing miR-146a resulted in sustained decreases in IOP ranging from 2.6 to 4.4 mmHg. Long term follow-up of rats injected with lentiviral vectors showed a sustained effect on IOP of 4.4 ± 2.9 mmHg that lasted until rats were sacrificed more than 8 months later. Eyes showed no signs of inflammation, loss of visual acuity, or other visible abnormalities. Conclusions Intracameral delivery of miR-146a can provide a long-term decrease of IOP in rats without signs of inflammation or other visible adverse effects. Transitional Relevance The IOP-lowering effects of miR-146 observed in rats provides a necessary step toward the development of an effective gene therapy for glaucoma in humans.
Collapse
|
7
|
miR-146a regulates insulin sensitivity via NPR3. Cell Mol Life Sci 2020; 78:2987-3003. [PMID: 33206203 PMCID: PMC8004521 DOI: 10.1007/s00018-020-03699-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
The pathogenesis of obesity-related metabolic diseases has been linked to the inflammation of white adipose tissue (WAT), but the molecular interconnections are still not fully understood. MiR-146a controls inflammatory processes by suppressing pro-inflammatory signaling pathways. The aim of this study was to characterize the role of miR-146a in obesity and insulin resistance. MiR-146a-/- mice were subjected to a high-fat diet followed by metabolic tests and WAT transcriptomics. Gain- and loss-of-function studies were performed using human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Compared to controls, miR-146a-/- mice gained significantly more body weight on a high-fat diet with increased fat mass and adipocyte hypertrophy. This was accompanied by exacerbated liver steatosis, insulin resistance, and glucose intolerance. Likewise, adipocytes transfected with an inhibitor of miR-146a displayed a decrease in insulin-stimulated glucose uptake, while transfecting miR-146a mimics caused the opposite effect. Natriuretic peptide receptor 3 (NPR3) was identified as a direct target gene of miR-146a in adipocytes and CRISPR/Cas9-mediated knockout of NPR3 increased insulin-stimulated glucose uptake and enhanced de novo lipogenesis. In summary, miR-146a regulates systemic and adipocyte insulin sensitivity via downregulation of NPR3.
Collapse
|
8
|
Poe AJ, Kulkarni M, Leszczynska A, Tang J, Shah R, Jami-Alahmadi Y, Wang J, Kramerov AA, Wohlschlegel J, Punj V, Ljubimov AV, Saghizadeh M. Integrated Transcriptome and Proteome Analyses Reveal the Regulatory Role of miR-146a in Human Limbal Epithelium via Notch Signaling. Cells 2020; 9:cells9102175. [PMID: 32993109 PMCID: PMC7650592 DOI: 10.3390/cells9102175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
MiR-146a is upregulated in the stem cell-enriched limbal region vs. central human cornea and can mediate corneal epithelial wound healing. The aim of this study was to identify miR-146a targets in human primary limbal epithelial cells (LECs) using genomic and proteomic analyses. RNA-seq combined with quantitative proteomics based on multiplexed isobaric tandem mass tag labeling was performed in LECs transfected with miR-146a mimic vs. mimic control. Western blot and immunostaining were used to confirm the expression of some targeted genes/proteins. A total of 251 differentially expressed mRNAs and 163 proteins were identified. We found that miR-146a regulates the expression of multiple genes in different pathways, such as the Notch system. In LECs and organ-cultured corneas, miR-146a increased Notch-1 expression possibly by downregulating its inhibitor Numb, but decreased Notch-2. Integrated transcriptome and proteome analyses revealed the regulatory role of miR-146a in several other processes, including anchoring junctions, TNF-α, Hedgehog signaling, adherens junctions, TGF-β, mTORC2, and epidermal growth factor receptor (EGFR) signaling, which mediate wound healing, inflammation, and stem cell maintenance and differentiation. Our results provide insights into the regulatory network of miR-146a and its role in fine-tuning of Notch-1 and Notch-2 expressions in limbal epithelium, which could be a balancing factor in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Adam J. Poe
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mangesh Kulkarni
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aleksandra Leszczynska
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ruchi Shah
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA; (Y.J.-A.); (J.W.)
| | - Jason Wang
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrei A. Kramerov
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA; (Y.J.-A.); (J.W.)
| | - Vasu Punj
- Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Alexander V. Ljubimov
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Mehrnoosh Saghizadeh
- Board of Governors Regenerative Medicine Institute, Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.J.P.); (M.K.); (A.L.); (R.S.); (J.W.); (A.A.K.); (A.V.L.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-248-8696
| |
Collapse
|
9
|
Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2185-2193. [PMID: 32919978 DOI: 10.1016/j.ajpath.2020.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
Chronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD). This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma. Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs) are the resident macrophages of the liver involved in the progression of ALD by activating pathways that lead to the production of cytokines and chemokines. In addition, KCs are involved in the production of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopolysaccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipopolysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polarization. Evidence from mouse models and early clinical studies in patients with ALD injury supports the notion that pathogenic macrophage subsets can be successfully translated into novel treatment options for patients with this disease.
Collapse
|
10
|
Phạm TL, Yin Y, Kwon HH, Shin N, Kim SI, Park H, Shin J, Shin HJ, Hwang JA, Song HJ, Kim SR, Lee JH, Hwang PTJ, Jun HW, Kim DW. miRNA 146a-5p-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles impair pain behaviors by inhibiting multiple inflammatory pathways in microglia. Nanomedicine (Lond) 2020; 15:1113-1126. [PMID: 32292108 DOI: 10.2217/nnm-2019-0462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: We investigated whether miRNA (miR) 146a-5p-loaded nanoparticles (NPs) can attenuate neuropathic pain behaviors in the rat spinal nerve ligation-induced neuropathic pain model by inhibiting activation of the NF-κB and p38 MAPK pathways in spinal microglia. Materials & methods: After NP preparation, miR NPs were assessed for their physical characteristics and then injected intrathecally into the spinal cords of rat spinal nerve ligation rats to test their analgesic effects. Results: miR NPs reduced pain behaviors for 11 days by negatively regulating the inflammatory response in spinal microglia. Conclusion: The anti-inflammatory effects of miR 146a-5p along with nanoparticle-based materials make miR NPs promising tools for treating neuropathic pain.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong Province, PR China
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joo Hyoung Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
11
|
Manoel Alves J, Handerson Gomes Teles R, do Valle Gomes Gatto C, Muñoz VR, Regina Cominetti M, Garcia de Oliveira Duarte AC. Mapping Research in the Obesity, Adipose Tissue, and MicroRNA Field: A Bibliometric Analysis. Cells 2019; 8:E1581. [PMID: 31817583 PMCID: PMC6952878 DOI: 10.3390/cells8121581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have investigated the control of adipose tissue expansion and inflammatory process by microRNAs (miRNAs). These two processes are of great interest because both are associated with obesity and metabolic syndrome. However, despite the great relevance of the role of miRNAs in obesity and adipose tissue, no qualitative and quantitative analysis on the subject has been performed. Thus, we aimed to examine global research activity and current trends with respect to the interaction between obesity, adipose tissue and miRNAs through a bibliometric analysis. This research was performed on the Scopus database for publications containing miRNA, obesity, and adipose tissue keyword combinations. In total, 898 articles were analyzed and the most frequently occurring keywords were selected and clustered into three well-defined groups. As a result, first group of keywords pointed to the research area on miRNAs expressed in obesity-associated diseases. The second group demonstrated the regulation of the adipogenesis process by miRNAs, while the third group highlighted brown adipose tissue and thermogenesis as one of the latest global research trends related to the theme. The studies selected in this paper describe the expression and performance of different miRNAs in obesity and comorbidities. Most studies have focused on identifying miRNAs and signaling pathways associated with obesity, type 2 diabetes mellitus, and cardiovascular disease. Thus, the miRNA profile for these diseases may be used as biomarkers and therapeutic targets in the prevention and treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- João Manoel Alves
- Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ramon Handerson Gomes Teles
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | - Camila do Valle Gomes Gatto
- Laboratory of Biochemistry and Molecular Biology of Exercise, University of São Paulo (USP), São Paulo 05508-030, SP, Brazil;
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil;
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (R.H.G.T.); (M.R.C.)
| | | |
Collapse
|