1
|
Alduais MA, El Rabey HA, Mohammed GM, Al-Awthan YS, Althiyabi AS, Attia ES, Rezk SM, Tayel AA. The anticancer activity of fucoidan coated selenium nanoparticles and curcumin nanoparticles against colorectal cancer lines. Sci Rep 2025; 15:287. [PMID: 39747357 PMCID: PMC11697394 DOI: 10.1038/s41598-024-82687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic. The resulted NCur was utilized for the biosynthesis of selenium NPs (SeNPs), then bioactive nanocomposites (NC) from them with fucoidan (Fu) were fabricated and evaluated as candidates to suppress colorectal cancers (CaCo-2 and HT-29) cells. The NCur and NCur-synthesized SeNPs were effectually produced with mean diameters of 34.67 ± 4.32 and 5.17 ± 1.06 nm, respectively. The plain and NCs of Fu/NCur/SeNPs characterization, with infrared spectroscopy and electron microscopy, emphasized their interaction and conjugations. The entire agents/NCs had potent cytotoxic effects against cancers' lines; the NC of Fu/NCur/SeNPs was the most effectual with IC50 of 10.35 ± 0.83 and 19.44 ± 1.39 mg/L against CaCo-2 and HT-29 cells, respectively, which were significantly exceeded the action of standard cisplatin drug. The NCs led to vigorous DNA damages in CaCo-2 cancerous cells, as proved with comet assay. The ultrastructure imagining (scanning/transmission microscopy) of treated cells with Fu/NCur/SeNPs confirmed the capability of NCs to induce severe apoptosis and deformation signs in cancerous cells. The bio-based constituents of Fu/NCur/SeNPs and advocate their prospective applications for preventing/managing colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Mohammed A Alduais
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
- Faculty of Science, Ibb University, Ibb, 70270, Yemen.
| | - Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El-Sadat City, 32897, Egypt
| | - Ghena M Mohammed
- Nutrition Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yahya S Al-Awthan
- Faculty of Science, Ibb University, Ibb, 70270, Yemen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah S Althiyabi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Eman S Attia
- School of International Education, Hainan College of Economics and Business, Hainan, 571127, China
- National Nutrition Institute, Ministry of Health, Cairo, 4262114, Egypt
| | - Samar M Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, El-Mahalla El-Kubra, Gharbyia, Egypt
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
2
|
Tawil S, Khaddage-Soboh N. Cancer research in Lebanon: Scope of the most recent publications of an academic institution (Review). Oncol Lett 2024; 28:350. [PMID: 38872861 PMCID: PMC11170263 DOI: 10.3892/ol.2024.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2024] Open
Abstract
Cancer may be considered one of the most interesting areas of study, and although oncology research has grown markedly over the last decade, there is as yet no known cure for cancer. The objective of the present review is to examine various approaches to cancer research from a single institution, summarize their key conclusions and offer recommendations for future evaluations. The review examined 72 cancer-associated studies that were published within six years from 2017 to 2022. Published works in the subject fields of 'cancer' or 'oncology' and 'research' that were indexed in Scopus and Web of Science were retrieved and sorted according to article title, author names, author count, citation count and key words. After screening, a total of 28 in vitro/animal studies and 46 patient-associated published studies were obtained. A large proportion of these studies comprised literature reviews (20/72), while 20 studies were observational in nature. The 72 publications included 23 in which various types of cancer were examined, while the remaining studies focused on specific types of cancer, including lung, breast, colon and brain cancer. These studies aimed to investigate the incidence, prevalence, treatment and prevention mechanisms associated with cancer. Despite the existence of extensive cancer research, scientists seldom contemplate an ultimate cure for cancer. However, it is crucial to continuously pursue research on cancer prevention and treatment in order to enhance the effectiveness and minimize potential side effects of cancer therapy.
Collapse
Affiliation(s)
- Samah Tawil
- School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nada Khaddage-Soboh
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
3
|
Ismail J, Shebaby WN, Daher J, Boulos JC, Taleb R, Daher CF, Mroueh M. The Wild Carrot ( Daucus carota): A Phytochemical and Pharmacological Review. PLANTS (BASEL, SWITZERLAND) 2023; 13:93. [PMID: 38202401 PMCID: PMC10781147 DOI: 10.3390/plants13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Daucus carota L., a member of the Apiaceae family, comprises 13 subspecies, with one being cultivated (D. carota L. ssp. sativus (Hoffm.) Arcang.) and the remaining being wild. Traditionally, the wild carrot has been recognized for its antilithic, diuretic, carminative, antiseptic, and anti-inflammatory properties and has been employed in the treatment of urinary calculus, cystitis, gout, prostatitis, and cancer. While extensive literature is available on the phytochemical, pharmacological, and therapeutic evaluations of the cultivated carrot, limited information has been published on the wild carrot. A thorough search was conducted on the phytochemical composition, folk-medicine uses, and pharmacological properties of wild carrot subspecies (Daucus carota L. ssp. carota). Various electronic databases were consulted, and the literature spanning from 1927 to early 2023 was reviewed. Thirteen wild Daucus carota subspecies were analyzed, revealing over 310 compounds, including terpenoids, phenylpropenoids, flavonoids, and phenolic acids, with 40 constituting more than 3% of the composition. This review also highlights the antioxidant, anticancer, antipyretic, analgesic, antibacterial, antifungal, hypolipidemic, and hepato- and gastroprotective properties of wild carrot subspecies. Existing in vitro and in vivo studies support their traditional uses in treating infections, inflammation, and cancer. However, further research on other subspecies is required to confirm additional applications. Well-designed preclinical and clinical trials are still necessary to establish the safety and efficacy of wild Daucus carota for human use.
Collapse
Affiliation(s)
- Jana Ismail
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon; (J.I.); (M.M.)
| | - Wassim N. Shebaby
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon; (J.I.); (M.M.)
| | - Joey Daher
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1102-2801, Lebanon;
| | - Joelle C. Boulos
- Institute of Pharmacy and Biomedical Sciences, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Robin Taleb
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1102-2801, Lebanon; (R.T.); (C.F.D.)
| | - Costantine F. Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 1102-2801, Lebanon; (R.T.); (C.F.D.)
- Alice Ramez Chagoury School of Nursing, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Mohamad Mroueh
- Pharmaceutical Sciences Department, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon; (J.I.); (M.M.)
| |
Collapse
|
4
|
Kim TW. Paeoniflorin Induces ER Stress-Mediated Apoptotic Cell Death by Generating Nox4-Derived ROS under Radiation in Gastric Cancer. Nutrients 2023; 15:5092. [PMID: 38140352 PMCID: PMC10745742 DOI: 10.3390/nu15245092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Gastric cancer is one of the most prevalent cancer types worldwide, and its resistance to cancer therapies, such as chemotherapy and radiotherapy, has made treating it a major challenge. Paeoniflorin (PF) is one potential pharmacological treatment derived from paeony root. However, in cancer, the molecular mechanisms and biological functions of PF are still unclear. In the present study, we found that PF exerts anti-tumor effects in vivo and in vitro and induces apoptotic cell death through ER stress, calcium (Ca2+), and reactive oxygen species (ROS) release in gastric cancer cells. However, ROS inhibition by DPI and NAC blocks cell death and the PERK signaling pathway via the reduction of Nox4. Moreover, PF triggers a synergistic inhibitory effect of the epithelial-mesenchymal transition (EMT) process under radiation exposure in radiation-resistant gastric cancer cells. These findings indicate that PF-induced Ca2+ and ROS release overcomes radioresistance via ER stress and induces cell death under radiation in gastric cancer cells. Therefore, PF, in combination with radiation, may be a powerful strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Faris A, Edder Y, Louchachha I, Lahcen IA, Azzaoui K, Hammouti B, Merzouki M, Challioui A, Boualy B, Karim A, Hanbali G, Jodeh S. From himachalenes to trans-himachalol: unveiling bioactivity through hemisynthesis and molecular docking analysis. Sci Rep 2023; 13:17653. [PMID: 37848506 PMCID: PMC10582069 DOI: 10.1038/s41598-023-44652-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
In this study, we report the first total hemisynthesis of trans-himachalol sesquiterpene, a stereoisomer of the natural cis-himachalol isolated from Cedrus atlantica essential oils, from himachalenes mixture in five steps. Reactions conditions were optimized and structures of the obtained compounds were confirmed by IR, mass spectra, 1H, and 13C NMR. The synthesized compounds were investigated for potential activities on various isolated smooth muscles and against different neurotransmitters using molecular docking. The results show that the synthesized compounds display high affinities towards the active site of the protein 7B2W and the compounds exhibit promising activities on various isolated smooth muscles and against different neurotransmitters.
Collapse
Affiliation(s)
- A Faris
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco.
| | - Y Edder
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - I Louchachha
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - I Ait Lahcen
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - K Azzaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - B Hammouti
- Euro-Mediterranean University of Fes, B.P. 15, 30070, Fez, Morocco
| | - M Merzouki
- Laboratoire de Chimie Appliquée et Environnement - Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, 60000, Oujda, Morocco
| | - A Challioui
- Laboratoire de Chimie Appliquée et Environnement - Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, 60000, Oujda, Morocco
| | - B Boualy
- Environmental Sciences and Applied Materials Research Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P. 145, 25000, Khouribga, Morocco
| | - A Karim
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - G Hanbali
- Equipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40001, Marrakech, Morocco
| | - S Jodeh
- Department of Chemistry, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
6
|
Moustaid W, Saffaj T, Annemer S, Assouguem A, Ullah R, Ali EA, Ercisli S, Marc RA, Farah A. Simultaneous Hydrodistillation of Healthy Cedrus atlantica Manetti and Infected by Trametes pini and Ungulina officinalis: Effect on Antibacterial Activity Utilizing a Mixture-Design Method. ACS OMEGA 2023; 8:31899-31913. [PMID: 37692238 PMCID: PMC10483654 DOI: 10.1021/acsomega.3c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
The Atlas cedar belongs to the Pinaceae family of trees and can be found in a crucial resinous mountain forest in Morocco that spans 133,000 hectares. This endemic species is valued for its wood quality and essential oil (EO), which has various biological activities. However, pathogenic fungi, particularly Trametes pini and Ungulina officinalis, frequently attack Atlas cedarwood, causing significant damage and loss of value. This study aims to extract EO from both healthy and infected Atlas cedarwood to promote its valorization and to assess the antibacterial properties of the resulting EOs. The EOs from healthy and sick cedarwood, as well as a combination of these woods, were extracted using hydrodistillation and simultaneous hydrodistillation. Gas chromatography and mass spectrometry were used to examine the chemical compositions of the EOs. In addition, the disk diffusion method and a measurement of the minimum inhibitory concentration were used to assess the EOs' antibacterial activity against two bacterial strains, namely, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show that the extraction yields of healthy cedarwood, cedarwood infected by Trametes pini, and cedarwood infected by U. officinalis were 1.43 ± 0.03, 0.56 ± 0.03, and 0.26 ± 0.06%, respectively, Moreover, the antibacterial results showed that neither the healthy nor the diseased cedar oil had any impact on either strain. However, the EOs from some binary mixtures (75:25, 50:50, and 25:75%) of cedarwood infected by Trametes pini and cedarwood infected by U.ngulina officinalis and the mixture of healthy cedarwood and cedarwood infected by the two fungi inhibited the growth of S. aureus with different MIC values. The findings of this research could lead to the development of new products with antibacterial properties, such as natural disinfectants, and reduce the amount of waste generated by the cedar industry.
Collapse
Affiliation(s)
- Wafae Moustaid
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Saoussan Annemer
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Amine Assouguem
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Romina Alina Marc
- Food
Engineering
Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
- Technological
Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No.
64, Cluj-Napoca 400509, Romania
| | - Abdellah Farah
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
7
|
El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, Hadni H, Assaggaf H, Qasem A, Goh KW, AL-Farga A, Bouyahya A, Fikri-Benbrahim K. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023; 28:5913. [PMID: 37570883 PMCID: PMC10421490 DOI: 10.3390/molecules28155913] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 08/13/2023] Open
Abstract
Cedrus atlantica (Endl.) Manetti ex Carriere is an endemic tree possessing valuable health benefits which has been widely used since time immemorial in international traditional pharmacopoeia. The aim of this exploratory investigation is to determine the volatile compounds of C. atlantica essential oils (CAEOs) and to examine their in vitro antimicrobial, antioxidant, anti-inflammatory, and dermatoprotective properties. In silico simulations, including molecular docking and pharmacokinetics absorption, distribution, metabolism, excretion, and toxicity (ADMET), and drug-likeness prediction were used to reveal the processes underlying in vitro biological properties. Gas chromatography-mass spectrophotometry (GC-MS) was used for the chemical screening of CAEO. The antioxidant activity of CAEO was investigated using four in vitro complementary techniques, including ABTS and DPPH radicals scavenging activity, ferric reductive power, and inhibition of lipid peroxidation (β-carotene test). Lipoxygenase (5-LOX) inhibition and tyrosinase inhibitory assays were used for testing the anti-inflammatory and dermatoprotective properties. GC-MS analysis indicated that the main components of CAEO are β-himachalene (28.99%), α-himachalene (14.43%), and longifolene (12.2%). An in vitro antimicrobial activity of CAEO was examined against eleven strains of Gram-positive bacteria (three strains), Gram-negative bacteria (four strains), and fungi (four strains). The results demonstrated high antibacterial and antifungal activity against ten of them (>15 mm zone of inhibition) using the disc-diffusion assay. The microdilution test showed that the lowest values of MIC and MBC were recorded with the Gram-positive bacteria in particular, which ranged from 0.0625 to 0.25 % v/v for MIC and from 0.5 to 0.125 % v/v for MBC. The MIC and MFC of the fungal strains ranged from 0.5 to 4.0% (MIC) and 0.5 to 8.0% v/v (MFC). According to the MBC/MIC and MFC/MIC ratios, CAEO has bactericidal and fungicidal activity. The results of the in vitro antioxidant assays revealed that CAEO possesses remarkable antioxidant activity. The inhibitory effects on 5-LOX and tyrosinase enzymes was also significant (p < 0.05). ADMET investigation suggests that the main compounds of CAEO possess favorable pharmacokinetic properties. These findings provide scientific validation of the traditional uses of this plant and suggest its potential application as natural drugs.
Collapse
Affiliation(s)
- Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca 20250, Morocco;
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Ammar AL-Farga
- Biochemistry Department College of Science University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco; (N.E.H.); (M.J.); (N.B.)
| |
Collapse
|
8
|
Zakaria NH, Saad N, Che Abdullah CA, Mohd Esa N. The Antiproliferative Effect of Chloroform Fraction of Eleutherine bulbosa (Mill.) Urb. on 2D- and 3D-Human Lung Cancer Cells (A549) Model. Pharmaceuticals (Basel) 2023; 16:936. [PMID: 37513848 PMCID: PMC10384492 DOI: 10.3390/ph16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Since lung cancer is the leading cause of cancer-related death worldwide, research is being conducted to discover anticancer agents as its treatment. Eleutherine bulbosa, a Dayak folklore medicine, exhibited anticancer effects against several cancer cells; however, its anticancer potency against lung cancer cells has not been explored yet. This study aims to determine the anticancer potency of E. bulbosa bulbs against lung cancer cells (A549) using 2D and 3D culture models, as well as determine its active compounds using gas chromatography-mass spectrometry (GC-MS) analysis. Three fractions of E. bulbosa bulbs, namely chloroform, n-hexane, and ethyl acetate, were tested for cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and CellTiter-Glo. The antiproliferative effects of the most cytotoxic fraction against the 2D culture model were determined by a clonogenic survival assay and propidium iodide/Hoechst 33342 double staining, whereas the effects against the 3D culture model were determined by microscopy, flow cytometry, and gene expression analysis. The chloroform fraction is the most cytotoxic against A549 cells than other fractions, and it inhibited colony formation and induced apoptosis of A549 cells. The chloroform fraction also inhibited the growth of the A549 spheroid by suppressing the spheroid size, inducing apoptosis, reducing the proportion of CD44 lung cancer stem cells, causing arrest at the S phase of the cell cycle, and suppressing the expression of the SOX2 and MYC genes. Furthermore, the GC-MS analysis detected 20 active compounds in the chloroform fraction, including the major compounds of eleutherine and isoeleutherine. In conclusion, the chloroform fraction of E. bulbosa bulbs exhibit its antiproliferative effect on 2D and 3D culture models of A549 cells, suggesting it could be a lung cancer chemopreventive agent.
Collapse
Affiliation(s)
- Nur Hannan Zakaria
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Che Azurahanim Che Abdullah
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
El Kantar S, Yassin A, Nehmeh B, Labaki L, Mitri S, Naser Aldine F, Hirko A, Caballero S, Monck E, Garcia-Maruniak A, Akoury E. Deciphering the therapeutical potentials of rosmarinic acid. Sci Rep 2022; 12:15489. [PMID: 36109609 PMCID: PMC9476430 DOI: 10.1038/s41598-022-19735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Lemon balm is herbal tea used for soothing stomach cramps, indigestion, and nausea. Rosmarinic acid (RA) is one of its chemical constituents known for its therapeutic potentials against cancer, inflammatory and neuronal diseases such as the treatment of neurofibromatosis or prevention from Alzheimer’s diseases (AD). Despite efforts, recovery and purification of RA in high yields has not been entirely successful. Here, we report its aqueous extraction with optimal conditions and decipher the structure by nuclear magnetic resonance (NMR) spectroscopy. Using various physical–chemical and biological assays, we highlight its anti-aggregation inhibition potentials against the formation of Tau filaments, one of the hallmarks of AD. We then examine its anti-cancer potentials through reduction of the mitochondrial reductase activity in tumor cells and investigate its electrochemical properties by cyclic voltammetry. Our data demonstrates that RA is a prominent biologically active natural product with therapeutic potentials for drug discovery in AD, cancer therapy and inflammatory diseases.
Collapse
|
10
|
Kumar A, Kaur S, Dhiman S, Singh PP, Bhatia G, Thakur S, Tuli HS, Sharma U, Kumar S, Almutary AG, Alnuqaydan AM, Hussain A, Haque S, Dhama K, Kaur S. Targeting Akt/NF-κB/p53 Pathway and Apoptosis Inducing Potential of 1,2-Benzenedicarboxylic Acid, Bis (2-Methyl Propyl) Ester Isolated from Onosma bracteata Wall. against Human Osteosarcoma (MG-63) Cells. Molecules 2022; 27:molecules27113478. [PMID: 35684419 PMCID: PMC9182111 DOI: 10.3390/molecules27113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 μM, 56.05 μM, and 47.12 μM, respectively. In Mg-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (−151.13 kcal/mol) and CDK1 (−133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
| | - Sukhvinder Dhiman
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Prithvi Pal Singh
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Bhatia
- Department of Biochemistry, Pt. Jawaharlal Nehru Government Medical College and Hospital Chamba, Chamba 176310, India;
| | - Sharad Thakur
- Biotechnology Division, COVID-19 Project, CSIR-IHBT, Palampur 176061, India;
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur 176061, India; (P.P.S.); (U.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subodh Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India; (S.D.); (S.K.)
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
- Correspondence: (A.G.A.); or (S.K.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52266, Saudi Arabia;
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai Campus, Dubai 345050, United Arab Emirates;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India; (A.K.); (S.K.)
- Correspondence: (A.G.A.); or (S.K.)
| |
Collapse
|
11
|
Abstract
This paper uses a unique dataset from Lebanon, a developing country with unstable political conditions, to explore the drivers of research outcomes. We use the Negative Binomial model to empirically examine the determinants of the total number of publications and single and co-authored articles. The results indicate that males are more likely to publish co-authored papers than females. Moreover, our findings show a quadratic relationship between age and the number of published papers with a peak at the age of 40. After this turning point, the publication rate starts to decrease at an increasing rate. When we run the model by gender, we find that females in large departments tend to publish more co-authored papers. We also find that full professors tend to publish more papers in Q1 and Q2 journals, while associate professors have more papers in Q2 and Q3 journals.
Collapse
|
12
|
Michalak I, Püsküllüoğlub M. Look into my onco-forest - review of plant natural products with anticancer activity. Curr Top Med Chem 2022; 22:922-938. [PMID: 35240958 DOI: 10.2174/1568026622666220303112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a multistage process that can be treated by numerous modalities including systemic treatment. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers etc. - contain a wide variety of primary and secondary metabolites, which demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids and many others. Anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established position in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems a promising strategy in cancer systemic treatment.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosława Püsküllüoğlub
- Labcorp (Polska) Sp. z o.o., Warsaw, Poland; c Department of Clinical Oncology, Maria Sklodowska Curie National Research Institute of Oncology, Cracow Branch, Kraków, Poland
| |
Collapse
|
13
|
Sanad H, Belattmania Z, Nafis A, Hassouani M, Mazoir N, Reani A, Hassani L, Vasconcelos V, Sabour B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Mar Drugs 2022; 20:md20030169. [PMID: 35323468 PMCID: PMC8955006 DOI: 10.3390/md20030169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, β-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69–13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Hiba Sanad
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Zahira Belattmania
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Ahmed Nafis
- Department of Biology, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco;
| | - Meryem Hassouani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Noureddine Mazoir
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Abdeltif Reani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Lahcen Hassani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, University Cadi Ayyad, P.O. Box 2390, Marrakech 40001, Morocco;
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-223-401-817
| | - Brahim Sabour
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| |
Collapse
|
14
|
Ibarra-Berumen J, Rosales-Castro M, Ordaz-Pichardo C. Potential use of wood metabolites for cancer treatment. Nat Prod Res 2021; 36:4293-4309. [PMID: 34459687 DOI: 10.1080/14786419.2021.1972420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study of medicinal plants for cancer treatment has gained attention due to an increasing incidence of cancer worldwide and antineoplastics-related undesirable secondary effects. Most of the natural products of medicinal plants that have been evaluated for cytotoxic activity, are derived from leaves, bark, roots and flowers. However, natural products derived from wood have demonstrated a cytotoxic effect with promising results. Moreover, some fractions and compounds have been isolated of wood in order to increase the effect. This review presents in vitro experimental evidence of cytotoxic effect of natural products from wood against cancer cell lines. It also provides considerations and recommendations to obtain herbal medicines over time.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Durango, Durango, Durango, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Durango, Durango, Durango, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
15
|
Shebaby W, Saliba J, Faour WH, Ismail J, El Hage M, Daher CF, Taleb RI, Nehmeh B, Dagher C, Chrabieh E, Mroueh M. In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.). JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113743. [PMID: 33359187 DOI: 10.1016/j.jep.2020.113743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. is an aromatic annual herb belonging to the family Cannabaceae and it is widely distributed worldwide. Cultivation, selling, and consumption of cannabis and cannabis related products, regardless of its use, was prohibited in Lebanon until April 22, 2020. Nevertheless, cannabis oil has been traditionally used unlawfully for many years in Lebanon to treat diseases such as arthritis, diabetes, cancer and few neurological disorders. AIM OF THE STUDY The present study aims to evaluate the phytochemical and anti-inflammatory properties of a cannabis oil preparation that is analogous to the illegally used cannabis oil in Lebanon. MATERIALS AND METHODS Dried Cannabis flowers were extracted with ethanol without any purification procedures to simulate the extracts sold by underground dealers in Lebanon. GC/MS was performed to identify chemical components of the cannabis oil extract (COE). In vivo anti-inflammatory effect of COE was evaluated by using carageenan- and formalin-induced paw edema rat models. TNF-α production were determined by using LPS-activated rat monocytes. Anti-inflammatory markers were quantified using Western blot. RESULTS Chemical analysis of COE revealed that cannabidiol (CBD; 59.1%) and tetrahydrocannabinol (THC; 20.2%) were found to be the most abundant cannabinoids.Various monoterpenes (α-Pinene, Camphene, β-Myrecene and D-Limonene) and sesquiterpenes (β-Caryophyllene, α-Bergamotene, α-Humelene, Humulene epoxide II, and Caryophyllene oxide) were identified in the extract. Results showed that COE markedly suppressed the release of TNF-α in LPS-stimulated rat monocytes. Western blot analysis revealed that COE significantly inhibited LPS-induced COX-2 and i-NOS protein expressions and blocked the phosphorylation of MAPKs, specifically that of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. COE displayed a significant inhibition of paw edema in both rat models. Histopathological examination revealed that COE reduced inflammation and edema in chronic paw edema model. CONCLUSION The current findings demonstrate that COE possesses remarkable in vivo and in vitro anti-inflammatory activities which support the traditional use of the Lebanese cannabis oil extract in the treatment of various inflammatory diseases including arthritis.
Collapse
Affiliation(s)
- Wassim Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon; School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Jane Saliba
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Wissam H Faour
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Jana Ismail
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Marissa El Hage
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Bilal Nehmeh
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Carol Dagher
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Edwin Chrabieh
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
16
|
Tannous S, Haykal T, Dhaini J, Hodroj MH, Rizk S. The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells. Biomed Pharmacother 2020; 132:110884. [PMID: 33080470 DOI: 10.1016/j.biopha.2020.110884] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Flaxseeds have been known for their anti-cancerous effects due to the high abundance of lignans released upon ingestion. The most abundant lignan, secoisolariciresinol diglucoside (SDG), is ingested during the dietary intake of flax, and is then metabolized in the gut into two mammalian lignan derivatives, Enterodiol (END) and Enterolactone (ENL). These lignans were previously reported to possess anti-tumor effects against breast, colon, and lung cancer. This study aims to investigate the potential anti-cancerous effect of the flaxseed lignans SDG, END and ENL on acute myeloid leukemia cells (AML) in vitro and to decipher the underlying molecular mechanism. AML cell lines, (KG-1 and Monomac-1) and a normal lymphoblastic cell line were cultured and treated with the purified lignans. ENL was found to be the most promising lignan, as it exhibits a significant selective dose- and time-dependent cytotoxic effect in both AML cell lines, contrary to normal cells. The cytotoxic effects observed were attributed to apoptosis induction, as revealed by an increase in Annexin V staining of AML cells with increasing ENL concentrations. The increase in the percentage of cells in the pre-G phase, in addition to cell death ELISA analysis, validated cellular and DNA fragmentation respectively. Analysis of protein expression using western blots confirmed the activation of the intrinsic apoptotic pathway upon ENL treatment. This was also accompanied by an increase in ROS production intracellularly. In conclusion, this study demonstrates that ENL has promising anti-cancer effects in AML cell lines in vitro, by promoting DNA fragmentation and the intrinsic apoptotic pathway, highlighting the protective health benefits of flax seeds in leukemia.
Collapse
Affiliation(s)
- Stephanie Tannous
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Jana Dhaini
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | | | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
17
|
Hodroj MH, Al Bast NAH, Taleb RI, Borjac J, Rizk S. Nettle Tea Inhibits Growth of Acute Myeloid Leukemia Cells In Vitro by Promoting Apoptosis. Nutrients 2020; 12:nu12092629. [PMID: 32872275 PMCID: PMC7551597 DOI: 10.3390/nu12092629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Urtica dioica (UD), commonly known as "stinging nettle", is a herbaceous flowering plant that is a widely used agent in traditional medicine worldwide. Several formulations of UD leaf extract have been reported to exhibit anti-inflammatory and antioxidant properties, with anticancer potential. The current study investigated the possible anticancer properties of nettle tea, prepared from Urtica dioica leaves, on acute myeloid leukemia (AML) cell lines, and deciphered the underlying molecular mechanisms. Treatment of AML cell lines (U-937 and KG-1) with UD aqueous leaf extract resulted in a dose- and time-dependent inhibition of proliferation, an increase in apoptotic hallmarks such as phosphatidylserine flipping to the outer membrane leaflet, and DNA fragmentation as revealed by cell-death ELISA and cell-cycle analysis assays. Apoptosis induction in U937 cells involves alterations in the expression of Bax and Bcl-2 upon exposure to nettle tea. Furthermore, the chemical composition of UD aqueous extract indicated the presence of multiple chemical agents, such as flavonoids and phenolics, mainly patuletin, m/p-hydroxybenzoic acid, and caffeic acid, among others, to which the pro-apoptotic and anti-tumor effects may be attributed.
Collapse
Affiliation(s)
- Mohammad Hassan Hodroj
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (M.H.H.); (N.a.H.A.B.); (R.I.T.)
| | - Nour al Hoda Al Bast
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (M.H.H.); (N.a.H.A.B.); (R.I.T.)
| | - Robin I. Taleb
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (M.H.H.); (N.a.H.A.B.); (R.I.T.)
| | - Jamilah Borjac
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh 1107-2809, Lebanon;
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon; (M.H.H.); (N.a.H.A.B.); (R.I.T.)
- Correspondence: ; Tel.: +961-9944-851
| |
Collapse
|
18
|
Shebaby W, Elias A, Mroueh M, Nehme B, El Jalbout ND, Iskandar R, Daher JC, Zgheib M, Ibrahim P, Dwairi V, Saad JM, Taleb RI, Daher CF. Himachalol induces apoptosis in B16-F10 murine melanoma cells and protects against skin carcinogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112545. [PMID: 31918014 DOI: 10.1016/j.jep.2020.112545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cedrus libani A. Rich (C. libani) is majestic evergreen Mediterranean conifer growing in the mountains of Lebanon. The ethnobotanical and traditional uses of cedar wood oil traces back to ancient times for the treatment of various ailments including cancer. Previous work in our laboratories revealed that himachalol (7-HC), a major sesquiterpene isolated from C. libani, possesses potent cytotoxic activity against various human cancer cell lines as well as promising anti-inflammatory effect in isolated rat monocytes. AIM OF THE STUDY The present study aims to elucidate the mechanism of action behind the cytotoxic activity of 7-HC against murine melanoma cells (B16F-10) and evaluates its chemopreventive effect against chemically-induced skin carcinogenesis in mice. MATERIALS AND METHODS 7-HC was extracted and purified from Cedrus libani wood. Cell viability was evaluated using WST-1 kit. Cell cycle analysis and apoptosis were assessed by Flow cytometry using propidium iodide (PI) and fluorescein Isothiocyanate (FITC)-conjugated Annexin V/PI staining respectively. Apoptosis related protein were quantified using western blot. The chemopreventive activity of 7-HC was evaluated for 20 weeks using a DMBA/TPA induced skin carcinogenesis model in Balb/c mice. RESULTS 7-HC displayed a potent anti-proliferative activity against the melanoma cells with an IC50 of 8.8 μg/ml and 7.3 μg/ml at 24 and 48 h, respectively. Co-treatment with Cisplatin did not show any synergistic or additive effect on cell viability. Flow cytometry analysis using PI revealed that 7-HC treatment (5 and 10 μg/ml) induces the accumulation of cells in the sub-G1 phase and causes a decline in cell populations in the S and G2/M phases. Annexin/PI staining also reveals that 7-HC treatment significantly increases the percentage of cells undergoing early and late apoptosis. Western blot analysis shows that 7-HC treatment decreases the level of the anti-apoptotic protein Bcl-2 and increases the level of the pro-apoptotic protein Bax. A reduction in the level of phosphorylated Erk and Akt was also observed. 7-HC via topical (2.5%), intraperitoneal (10, 25 and 50 mg/kg) or gavage (50 mg/kg) treatment revealed a significant decrease in papilloma volume with no adverse effect on liver and kidney function. CONCLUSIONS The present study demonstrates that 7-HC treatment protects against chemically-induced skin carcinogenesis, promotes cell cycle arrest and induces apoptosis partially through an inhibition of both the MAPK/Erk and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Wassim Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Andree Elias
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bilal Nehme
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Nahia Dib El Jalbout
- Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Rita Iskandar
- Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Joey C Daher
- Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Michelle Zgheib
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Pascale Ibrahim
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Vanessa Dwairi
- Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Jean Michel Saad
- Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
19
|
Idriss M, Hodroj MH, Fakhoury R, Rizk S. Beta-Tocotrienol Exhibits More Cytotoxic Effects than Gamma-Tocotrienol on Breast Cancer Cells by Promoting Apoptosis via a P53-Independent PI3-Kinase Dependent Pathway. Biomolecules 2020; 10:biom10040577. [PMID: 32283796 PMCID: PMC7226046 DOI: 10.3390/biom10040577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Studies on tocotrienols have progressively revealed the benefits of these vitamin E isoforms on human health. Beta-tocotrienol (beta-T3) is known to be less available in nature compared to other vitamin E members, which may explain the restricted number of studies on beta-T3. In the present study, we aim to investigate the anti-proliferative effects and the pro-apoptotic mechanisms of beta-T3 on two human breast adenocarcinoma cell lines MDA-MB-231 and MCF7. To assess cell viability, both cell lines were incubated for 24 and 48 h, with different concentrations of beta-T3 and gamma-T3, the latter being a widely studied vitamin E isoform with potent anti-cancerous properties. Cell cycle progression and apoptosis induction upon treatment with various concentrations of the beta-T3 isoform were assessed. The effect of beta-T3 on the expression level of several apoptosis-related proteins p53, cytochrome C, cleaved-PARP-1, Bax, Bcl-2, and caspase-3, in addition to key cell survival proteins p-PI3K and p-GSK-3 α/β was determined using western blot analysis. Beta-tocotrienol exhibited a significantly more potent anti-proliferative effect than gamma-tocotrienol on both cell lines regardless of their hormonal receptor status. Beta-T3 induced a mild G1 arrest on both cell lines, and triggered a mitochondrial stress-mediated apoptotic response in MDA-MB-231 cells. Mechanistically, beta-T3′s anti-neoplastic activity involved the downregulation of phosphorylated PI3K and GSK-3 cell survival proteins. These findings suggest that vitamin E beta-T3 should be considered as a promising anti-cancer agent, more effective than gamma-T3 for treating human breast cancer and deserves to be further studied to investigate its effects in vitro and on other cancer types.
Collapse
Affiliation(s)
- Maya Idriss
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
| | - Rajaa Fakhoury
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Correspondence: ; Tel.: +961-1786456
| |
Collapse
|