1
|
Maity J, Pal P, Ghosh M, Naskar B, Chakraborty S, Pal R, Mukhopadhyay PK. Molecular Dissection of the Arsenic-Induced Leukocyte Incursion into the Inflamed Thymus and Spleen and Its Amelioration by Co-supplementation of L-Ascorbic Acid and α-Tocopherol. Biol Trace Elem Res 2024:10.1007/s12011-024-04378-z. [PMID: 39325335 DOI: 10.1007/s12011-024-04378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Arsenic, a surreptitious presence in our environment, perpetuates a persistent global menace with its deleterious impacts. It possesses the capability to trigger substantial immunosuppression by instigating inflammation in critical organs like the thymus and spleen. L-Ascorbic acid (L-AA) exhibits robust immunoregulatory prowess by orchestrating the epigenetic terrain through TET and JHDM pathways. Conversely, α-tocopherol (α-T) demonstrates the capacity to dampen the production of pro-inflammatory cytokines by modulating the PI3K-Akt axis. Given these insights, this inquiry embarks on exploring the mitigative potential of L-AA and α-T co-supplementation at the transcriptome level within leukocytes under arsenic exposure. Concurrently, the research endeavours to unravel the potent anti-inflammatory effects of administering α-T and L-AA, alleviating inflammation within the spleen and thymus amidst arsenic-induced insult and delving deeply into their immunomodulatory mechanisms. The rats were randomly allocated into eight distinct groups for subsequent experimentation: (I) the control group was administered solely with distilled water as the vehicle (control); (II) NaAsO2-treated group (As); (III) NaAsO2 treated along with L-ascorbic acid and α-tocopherol supplemented group (As + L-AA + α-T); (IV) L-ascorbic acid and α-tocopherol supplemented group (L-AA + α-T); (V) NaAsO2 treated along with L-ascorbic acid supplemented group (As + L-AA); (VI) only L-ascorbic acid supplemented group (L-AA); (VII) NaAsO2 treated along with α-tocopherol supplemented group (As + α-T); (VIII) only α-tocopherol supplemented group (α-T). Rats treated with NaAsO2 exhibited an increased neutrophil count in their bloodstream, as revealed by a comprehensive transcriptomic analysis showcasing heightened expressions of ItgaM, MMP9, and Itga4 within circulating leukocytes under arsenic exposure. Concurrently, arsenic heightened the expression of pro-inflammatory cytokines within the thymus and spleen. This elevated cytokine activity promoted the upregulation of ICAM-1 on vascular endothelial cells, facilitating the infiltration of Ly6g + leukocytes into the afflicted thymus and spleen. Remarkably, the combination of L-AA acid and α-T demonstrated substantial therapeutic efficacy, adeptly reducing the influx of Ly6g + leukocytes into these immune sites and subsequent reduction of excessive collagen deposition. The dynamic duo of L-AA and α-T achieved this amelioration by suppressing the expression of ItgaM, MMP9, and Itga4 mRNA within circulating leukocytes and moderating tissue levels of pro-inflammatory cytokines in arsenic-exposed thymus and spleen.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
- School of Life Science, Department of Biotechnology, Swami Vivekananda University, Barrackpore, India
| | - Madhurima Ghosh
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Bhagyashree Naskar
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
2
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Cale JM, Ham KA, Li D, McIntosh CS, Watts GF, Wilton SD, Aung-Htut MT. Induced alternative splicing an opportunity to study PCSK9 protein isoforms at physiologically relevant concentrations. Sci Rep 2023; 13:19725. [PMID: 37957262 PMCID: PMC10643364 DOI: 10.1038/s41598-023-47005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Splice modulating antisense oligomers (AOs) are increasingly used to modulate RNA processing. While most are investigated for their use as therapeutics, AOs can also be used for basic research. This study examined their use to investigate internally and terminally truncated proprotein convertase subtilisin/kexin type 9 (PCSK9) protein isoforms. Previous studies have used plasmid or viral-vector-mediated protein overexpression to study different PCSK9 protein isoforms, creating an artificial environment within the cell. Here we designed and tested AOs to remove specific exons that encode for PCSK9 protein domains and produced protein isoforms at more physiologically relevant levels. We evaluated the isoforms' expression, secretion, and subsequent impact on the low-density lipoprotein (LDL) receptor and its activity in Huh-7 cells. We found that modifying the Cis-His-rich domain by targeting exons 10 or 11 negatively affected LDL receptor activity and hence did not enhance LDL uptake although the levels of LDL receptor were increased. On the other hand, removing the hinge region encoded by exon 8, or a portion of the prodomain encoded by exon 2, have the potential as therapeutics for hypercholesterolemia. Our findings expand the understanding of PCSK9 isoforms and their impact on the LDL receptor and its activity at physiologically relevant concentrations.
Collapse
Affiliation(s)
- Jessica M Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Kristin A Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Craig S McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Cardiometabolic Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.
| |
Collapse
|
4
|
Nguyen HC, Bu S, Nikfarjam S, Rasheed B, Michels DCR, Singh A, Singh S, Marszal C, McGuire JJ, Feng Q, Frisbee JC, Qadura M, Singh KK. Loss of fatty acid binding protein 3 ameliorates lipopolysaccharide-induced inflammation and endothelial dysfunction. J Biol Chem 2023; 299:102921. [PMID: 36681124 PMCID: PMC9988587 DOI: 10.1016/j.jbc.2023.102921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating fatty acid-binding protein 3 (FABP3) is an effective biomarker of myocardial injury and peripheral artery disease (PAD). The endothelium, which forms the inner most layer of every blood vessel, is exposed to higher levels of FABP3 in PAD or following myocardial injury, but the pathophysiological role of endothelial FABP3, the effect of FABP3 exposure on endothelial cells, and related mechanisms are unknown. Here, we aimed to evaluate the pathophysiological role of endothelial FABP3 and related mechanisms in vitro. Our molecular and functional in vitro analyses show that (1) FABP3 is basally expressed in endothelial cells; (2) inflammatory stress in the form of lipopolysaccharide (LPS) upregulated endothelial FABP3 expression; (3) loss of endogenous FABP3 protected endothelial cells against LPS-induced endothelial dysfunction; however, exogenous FABP3 exposure exacerbated LPS-induced inflammation; (4) loss of endogenous FABP3 protected against LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling pathways. Together, these findings suggest that gain-of endothelial FABP3 exacerbates, whereas loss-of endothelial FABP3 inhibits LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling. We propose that an increased circulating FABP3 in myocardial injury or PAD patients may be detrimental to endothelial function, and therefore, therapies aimed at inhibiting FABP3 may improve endothelial function in diseased states.
Collapse
Affiliation(s)
- Hien C Nguyen
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Shuhan Bu
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Sepideh Nikfarjam
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Berk Rasheed
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - David C R Michels
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Shweta Singh
- Department of Applied Science, Fanshawe College, London, Ontario, Canada
| | - Caroline Marszal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Qingping Feng
- Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mohammad Qadura
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
5
|
Cruz-Pulido D, Ouma WZ, Kenney SP. Differing coronavirus genres alter shared host signaling pathways upon viral infection. Sci Rep 2022; 12:9744. [PMID: 35697915 PMCID: PMC9189807 DOI: 10.1038/s41598-022-13396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Coronaviruses are important viral pathogens across a range of animal species including humans. They have a high potential for cross-species transmission as evidenced by the emergence of COVID-19 and may be the origin of future pandemics. There is therefore an urgent need to study coronaviruses in depth and to identify new therapeutic targets. This study shows that distant coronaviruses such as Alpha-, Beta-, and Deltacoronaviruses can share common host immune associated pathways and genes. Differentially expressed genes (DEGs) in the transcription profile of epithelial cell lines infected with swine acute diarrhea syndrome, severe acute respiratory syndrome coronavirus 2, or porcine deltacoronavirus, showed that DEGs within 10 common immune associated pathways were upregulated upon infection. Twenty Three pathways and 21 DEGs across 10 immune response associated pathways were shared by these viruses. These 21 DEGs can serve as focused targets for therapeutics against newly emerging coronaviruses. We were able to show that even though there is a positive correlation between PDCoV and SARS-CoV-2 infections, these viruses could be using different strategies for efficient replication in their cells from their natural hosts. To the best of our knowledge, this is the first report of comparative host transcriptome analysis across distant coronavirus genres.
Collapse
Affiliation(s)
- Diana Cruz-Pulido
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA
| | | | - Scott P Kenney
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
6
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
7
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
8
|
Flynn LL, Mitrpant C, Adams A, Pitout IL, Stirnweiss A, Fletcher S, Wilton SD. Targeted SMN Exon Skipping: A Useful Control to Assess In Vitro and In Vivo Splice-Switching Studies. Biomedicines 2021; 9:552. [PMID: 34069072 PMCID: PMC8156830 DOI: 10.3390/biomedicines9050552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
The literature surrounding the use of antisense oligonucleotides continues to grow, with new disease and mechanistic applications constantly evolving. Furthermore, the discovery and advancement of novel chemistries continues to improve antisense delivery, stability and effectiveness. For each new application, a rational sequence design is recommended for each oligomer, as is chemistry and delivery optimization. To confirm oligomer delivery and antisense activity, a positive control AO sequence with well characterized target-specific effects is recommended. Here, we describe splice-switching antisense oligomer sequences targeting the ubiquitously expressed human and mouse SMN and Smn genes for use as control AOs for this purpose. We report two AO sequences that induce targeted skipping of SMN1/SMN2 exon 7 and two sequences targeting the Smn gene, that induce skipping of exon 5 and exon 7. These antisense sequences proved effective in inducing alternative splicing in both in vitro and in vivo models and are therefore broadly applicable as controls. Not surprisingly, we discovered a number of differences in efficiency of exon removal between the two species, further highlighting the differences in splice regulation between species.
Collapse
Affiliation(s)
- Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Abbie Adams
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | | | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Asai M, Koike Y, Kuwatsuka Y, Yagi Y, Kashiyama K, Tanaka K, Mishima H, Yoshiura K, Utani A, Murota H. Multifaceted array-based keloidal gene expression profiling reveals specific MDFI upregulation in keloid lesions. Clin Exp Dermatol 2021; 46:1255-1261. [PMID: 33899950 DOI: 10.1111/ced.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Keloid lesions are characterized by mesenchymal cell proliferation and excessive extracellular matrix deposition. Previous microarray analyses have been performed to investigate the mechanism of keloid development. However, the molecular pathology that contributes to keloid development remains obscure. AIM To explore the underlying essential molecules of keloids using microarrays. METHODS We performed microarray analyses of keloid and nonlesional skin tissues both in vivo and in vitro. Gene expression levels were compared between tissues and cells. Quantitative reverse transcription (qRT)-PCR and immunohistochemical staining were used to determine the expression levels of molecules of interest in keloid tissues. RESULTS Several common molecules were upregulated in both keloid tissues and keloid-lesional fibroblasts. PTPRD and NTM were upregulated both in vivo and in vitro. The genes MDFI and ITGA4 were located at the centre of the gene coexpression network analysis using keloid tissues. qRT-PCR revealed significant expression levels of PTPRD and MDFI in keloid tissues. Immunopathological staining revealed that MDFI-positive cells, which have fibroblast characteristics, were located in the keloid-associated lymphoid tissue (KALT) portion of the keloid tissue. CONCLUSION Our gene expression profiles of keloids could distinguish the difference between lesional tissue and cultured lesional fibroblasts, and MDFI was found to be commonly expressed in both tissues and cells. Thus, MDFI-positive cells, which were located in the KALT, may play an important role in keloid pathogenesis and thus might be useful for in vitro keloid studies.
Collapse
Affiliation(s)
- M Asai
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Y Koike
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Y Kuwatsuka
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Y Yagi
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - K Kashiyama
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - K Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - A Utani
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - H Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Fukushima S, Farea M, Maeta K, Rani AQM, Fujioka K, Nishio H, Matsuo M. Dual Fluorescence Splicing Reporter Minigene Identifies an Antisense Oligonucleotide to Skip Exon v8 of the CD44 Gene. Int J Mol Sci 2020; 21:ijms21239136. [PMID: 33266296 PMCID: PMC7729581 DOI: 10.3390/ijms21239136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Splicing reporter minigenes are used in cell-based in vitro splicing studies. Exon skippable antisense oligonucleotide (ASO) has been identified using minigene splicing assays, but these assays include a time- and cost-consuming step of reverse transcription PCR amplification. To make in vitro splicing assay easier, a ready-made minigene (FMv2) amenable to quantitative splicing analysis by fluorescence microscopy was constructed. FMv2 was designed to encode two fluorescence proteins namely, mCherry, a transfection marker and split eGFP, a marker of splicing reaction. The split eGFP was intervened by an artificial intron containing a multicloning site sequence. Expectedly, FMv2 transfected HeLa cells produced not only red mCherry but also green eGFP signals. Transfection of FMv2CD44v8, a modified clone of FMv2 carrying an insertion of CD44 exon v8 in the multicloning site, that was applied to screen exon v8 skippable ASO, produced only red signals. Among seven different ASOs tested against exon v8, ASO#14 produced the highest index of green signal positive cells. Hence, ASO#14 was the most efficient exon v8 skippable ASO. Notably, the well containing ASO#14 was clearly identified among the 96 wells containing randomly added ASOs, enabling high throughput screening. A ready-made FMv2 is expected to contribute to identify exon skippable ASOs.
Collapse
Affiliation(s)
- Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Manal Farea
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Kazuhiro Maeta
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Abdul Qawee Mahyoob Rani
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
| | - Hisahide Nishio
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
- Correspondence: ; Tel.: +81-78-974-6194
| |
Collapse
|
11
|
Ahlawat S, Arora R, Sharma U, Sharma A, Girdhar Y, Sharma R, Kumar A, Vijh RK. Comparative gene expression profiling of milk somatic cells of Sahiwal cattle and Murrah buffaloes. Gene 2020; 764:145101. [PMID: 32877747 DOI: 10.1016/j.gene.2020.145101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/31/2023]
Abstract
India is the world's largest milk producing country because of massive contribution made by cattle and buffaloes. In the present investigation, comprehensive comparative profiling of transcriptomic landscape of milk somatic cells of Sahiwal cattle and Murrah buffaloes was carried out. Genes with highest transcript abundance in both species were enriched for biological processes such as lactation, immune response, cellular oxidant detoxification and response to hormones. Analysis of differential expression identified 377 significantly up-regulated and 847 significantly down-regulated genes with fold change >1.5 in Murrah buffaloes as compared to Sahiwal cattle (padj <0.05). Marked enrichment of innate and adaptive immune response related GO terms and higher expression of genes for various host defense peptides such as lysozyme, defensin β and granzymes were evident in buffaloes. Genes related to ECM-receptor interaction, complement and coagulation cascades, cytokine-cytokine receptor interaction and keratinization pathway showed more abundant expression in cattle. Network analysis of the up-regulated genes delineated highly connected genes representing immunity and haematopoietic cell lineage (CBL, CD28, CD247, PECAM1 and ITGA4). For the down-regulated dataset, genes with highest interactions were KRT18, FGFR1, GPR183, ITGB3 and DKK3. Our results lend support to more robust immune mechanisms in buffaloes, possibly explaining lower susceptibility to mammary infections as compared to cattle.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | |
Collapse
|
12
|
Li S, Wang Y, Zhang C. Network pharmacology strategy for predicting the correlation of Systemic Scleroderma with Vitamin D deficiency. Int Immunopharmacol 2020; 86:106702. [PMID: 32563782 DOI: 10.1016/j.intimp.2020.106702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 01/25/2023]
Abstract
The deficiency of Vitamin D (VD) is a common symptom of systemic scleroderma (SSc), but the correlation of VD deficiency and SSc is not completely clear. Therefore, a strategy based on network pharmacology was designed to explore the correlation of VD deficiency and SSc. After a series of network construction and analysis, 5 integrins were predicated as the kernel targets in the correlation of VD deficiency and SSc, including ITGA5, ITGA4, ITGB3, ITGB1 and ITGAV. The crucial pathways in which the kernel targets participated were mainly involved in the function of immune, vascular and internal organ. The regulation modules of crucial pathways were closely related to the biological processes in the pathological of SSc. Taken together, the analysis predicted that the deficiency of VD might affect the pathological of SSc through the mediation of these integrins. Therefore, targeted regulation of these integrins might be an effective therapy against SSc.
Collapse
Affiliation(s)
- Shizhe Li
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, PR China.
| | - Yeming Wang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, PR China
| | - Chaoqun Zhang
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, PR China
| |
Collapse
|
13
|
Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides. Int J Mol Sci 2019; 20:ijms20205030. [PMID: 31614438 PMCID: PMC6834167 DOI: 10.3390/ijms20205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
The process of pre-mRNA splicing is a common and fundamental step in the expression of most human genes. Alternative splicing, whereby different splice motifs and sites are recognised in a developmental and/or tissue-specific manner, contributes to genetic plasticity and diversity of gene expression. Redirecting pre-mRNA processing of various genes has now been validated as a viable clinical therapeutic strategy, providing treatments for Duchenne muscular dystrophy (inducing specific exon skipping) and spinal muscular atrophy (promoting exon retention). We have designed and evaluated over 5000 different antisense oligonucleotides to alter splicing of a variety of pre-mRNAs, from the longest known human pre-mRNA to shorter, exon-dense primary gene transcripts. Here, we present our guidelines for designing, evaluating and optimising splice switching antisense oligomers in vitro. These systematic approaches assess several critical factors such as the selection of target splicing motifs, choice of cells, various delivery reagents and crucial aspects of validating assays for the screening of antisense oligonucleotides composed of 2′-O-methyl modified bases on a phosphorothioate backbone.
Collapse
|