1
|
Cubides D, Guimerà X, Jubany I, Gamisans X. A review: Biological technologies for nitrogen monoxide abatement. CHEMOSPHERE 2023; 311:137147. [PMID: 36347354 DOI: 10.1016/j.chemosphere.2022.137147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen oxides (NOx), including nitrogen monoxide (NO) and nitrogen dioxide (NO2), are among the most important global atmospheric pollutants because they have a negative impact on human respiratory health, animals, and the environment through the greenhouse effect and ozone layer destruction. NOx compounds are predominantly generated by anthropogenic activities, which involve combustion processes such as energy production, transportation, and industrial activities. The most widely used alternatives for NOx abatement on an industrial scale are selective catalytic and non-catalytic reductions; however, these alternatives have high costs when treating large air flows with low pollutant concentrations, and most of these methods generate residues that require further treatment. Therefore, biotechnologies that are normally used for wastewater treatment (based on nitrification, denitrification, anammox, microalgae, and combinations of these) are being investigated for flue gas treatment. Most of such investigations have focused on chemical absorption and biological reduction (CABR) systems using different equipment configurations, such as biofilters, rotating reactors, or membrane reactors. This review summarizes the current state of these biotechnologies available for NOx treatment, discusses and compares the use of different microorganisms, and analyzes the experimental performance of bioreactors used for NOx emission control, both at the laboratory scale and in industrial settings, to provide an overview of proven technical solutions and biotechnologies for NOx treatment. Additionally, a comparative assessment of the advantages and disadvantages is performed, and special challenges for biological technologies for NO abatement are presented.
Collapse
Affiliation(s)
- David Cubides
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain; Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Guimerà
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain.
| | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Plaça de la Ciència, 2, Manresa 08242, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering (EMIT), Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Av. Bases de Manresa 61-73, 08242 Manresa, Spain
| |
Collapse
|
2
|
Kamalabadi M, Ghoorchian A, Derakhshandeh K, Gholyaf M, Ravan M. Design and Fabrication of a Gas Sensor Based on a Polypyrrole/Silver Nanoparticle Film for the Detection of Ammonia in Exhaled Breath of COVID-19 Patients Suffering from Acute Kidney Injury. Anal Chem 2022; 94:16290-16298. [DOI: 10.1021/acs.analchem.2c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Mahmoud Gholyaf
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Maryam Ravan
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| |
Collapse
|
3
|
Li W, Yue H, Zhang C, Hu J, Wang Q, Li Y, Zhang S, Chen J, Zhao J. Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal. CHEMOSPHERE 2022; 303:134943. [PMID: 35569635 DOI: 10.1016/j.chemosphere.2022.134943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The chemical absorption-bioelectrochemical reduction (CABER) integrated system provides an alternative of good potential for NO removal. The efficient utilization of cathode electrons directly determines the system performance and operating cost. Herein, we synthesize a polypyrrole/carbon nanotubes (PPy/CNTs) composite to engineer a micro-and nanoscale interface with low resistance and high biocompatibility between the cathode and biofilms in the CABER system. The resulting PPy/CNTs biocathodes exhibit 36.4% increase in biomass density, 40.7%-302.6% increase in Faraday efficiency along Fe(III)EDTA reduction, and 204% increase in Fe(II)EDTA-NO reduction rate. The enrichment of functional microorganisms is validated to be a key strengthening factor, as the proportion of which increased from 57.9% to 84.6%. Moreover, for efficient electron transfer and utilization, a low-resistance electron transfer route, "electrode substrate → PPy (→ CNTs) → microbial cells → Fe(III)EDTA or Fe(II)EDTA-NO", is realized in the multiscale conductive networks constructed of PPy/CNTs composite and microbial nanowires.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Huanyu Yue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Chunyan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Junyu Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiaoli Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanming Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingkai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Li Y, Feng K, Wu C, Mei J, Zhang S, Ye J, Chen J, Zhao J, Chen J. Mass transfer and reaction simultaneously enhanced airlift microbial electrolytic cell system with high gaseous o-xylene removal capacity. CHEMOSPHERE 2022; 291:132888. [PMID: 34780742 DOI: 10.1016/j.chemosphere.2021.132888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
To overcome the limitation of mass transfer and reaction rate involved in the biodegradation of gaseous o-xylene, the airlift reactor and microbial electrolysis cell were integrated to construct an airlift microbial electrolysis cell (AL-MEC) system for the first time, in which the bioanode was modified by polypyrrole to further improve biofilm attachment. The developed AL-MEC system achieved 95.4% o-xylene removal efficiency at optimized conditions, and maintained around 75% removal efficiency even while the inlet o-xylene load was as high as 684 g m-3 h-1. The existence of O2 exhibited a competition in electrons with the bioanode but a positive effect on ring-opening process in the o-xylene oxidation. The limitation of mass transfer had been overcome as the empty bed resistance time in the range of 20-80 s did not influence the system performance significantly. The microbial community analysis confirmed the o-xylene degradation microbes and electroactive bacteria were the dominant, which could be further enriched at 0.3 V against standard hydrogen electrode. This work revealed the feasibility of the AL-MEC system for the degradation of o-xylene and similar compounds, and provided insights into bioelectrochemical system design with high gaseous pollution removal capacity.
Collapse
Affiliation(s)
- Yuanming Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ke Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao Wu
- Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Ji Mei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingkai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Loh DM, Nava M, Nocera DG. Polypyrrole-Silicon Nanowire Arrays for Controlled Intracellular Cargo Delivery. NANO LETTERS 2022; 22:366-371. [PMID: 34965139 DOI: 10.1021/acs.nanolett.1c04033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracellular cargo delivery is a critical and challenging step in controlling cell states. Silicon nanowire (NW) arrays have emerged as a powerful platform for accessing the intracellular space through a combination of their nanoscale dimensions and electrical properties. Here, we develop and characterize a conductive polypyrrole (PPy)-NW device for temporally controlled intracellular delivery. Fluorescent cargos, doped in electroresponsive PPy matrices at wire tips as well as entire NW arrays, are released with an applied reducing potential. Intracellular delivery into endothelial cells from PPy-Si substrates demonstrated comparable kinetics to solution-based delivery methods while requiring an order of magnitude less cargo loading. This hybrid polymer-semiconductor platform extends methods available for intracellular delivery and links electrical signaling from artificial systems with living molecular transduction.
Collapse
Affiliation(s)
- Daniel M Loh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew Nava
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|