1
|
Nielsen HN, Holm R, Sweazey R, Andersen JP, Artigas P, Vilsen B. Na +,K +-ATPase with Disrupted Na + Binding Sites I and III Binds Na + with Increased Affinity at Site II and Undergoes Na +-Activated Phosphorylation with ATP. Biomolecules 2024; 14:135. [PMID: 38275764 PMCID: PMC10812997 DOI: 10.3390/biom14010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Na+,K+-ATPase actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions for each ATP hydrolyzed. The atomic structure with bound Na+ identifies three Na+ sites, named I, II, and III. It has been proposed that site III is the first to be occupied and site II last, when Na+ binds from the cytoplasmic side. It is usually assumed that the occupation of all three Na+ sites is obligatory for the activation of phosphoryl transfer from ATP. To obtain more insight into the individual roles of the ion-binding sites, we have analyzed a series of seven mutants with substitution of the critical ion-binding residue Ser777, which is a shared ligand between Na+ sites I and III. Surprisingly, mutants with large and bulky substituents expected to prevent or profoundly disturb Na+ access to sites I and III retain the ability to form a phosphoenzyme from ATP, even with increased apparent Na+ affinity. This indicates that Na+ binding solely at site II is sufficient to promote phosphorylation. These mutations appear to lock the membrane sector into an E1-like configuration, allowing Na+ but not K+ to bind at site II, while the cytoplasmic sector undergoes conformational changes uncoupled from the membrane sector.
Collapse
Affiliation(s)
- Hang N. Nielsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (P.A.)
| | | | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (P.A.)
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
2
|
Artigas P, Meyer DJ, Young VC, Spontarelli K, Eastman J, Strandquist E, Rui H, Roux B, Birk MA, Nakanishi H, Abe K, Gatto C. A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities. Proc Natl Acad Sci U S A 2023; 120:e2313999120. [PMID: 38079564 PMCID: PMC10756188 DOI: 10.1073/pnas.2313999120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+ in exchange for 2 K+ per hydrolyzed ATP. Artemia express several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopus α1's Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found that Artemia express two salinity-independent canonical α subunits (α1NN and α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KK pump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KK pumps and compared it to that of Xenopus α1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics to Xenopus α1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK's Lys308 helps to maintain high affinity for external K+ when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener 86Rb+, we prove that double-lysine-substituted pumps transport 2Na+ and 1 K+ per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowing Artemia to maintain steeper Na+ gradients in hypersaline environments.
Collapse
Affiliation(s)
- Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Dylan J. Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Victoria C. Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Jessica Eastman
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Evan Strandquist
- School of Biological Sciences, Illinois State University, Normal, IL61790
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL60637
| | - Matthew A. Birk
- Department of Biology, Saint Francis University, Loretto, PA15940
| | - Hanayo Nakanishi
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Kazuhiro Abe
- Department of Basic Medical Sciences, Cellular and Structural Physiology Institute, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL61790
| |
Collapse
|
3
|
Arystarkhova E, Toustrup-Jensen MS, Holm R, Ko JK, Lee KE, Feschenko P, Ozelius LJ, Brashear A, Vilsen B, Sweadner KJ. Temperature instability of a mutation at a multidomain junction in Na,K-ATPase isoform ATP1A3 (p.Arg756His) produces a fever-induced neurological syndrome. J Biol Chem 2023; 299:102758. [PMID: 36462665 PMCID: PMC9860391 DOI: 10.1016/j.jbc.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
ATP1A3 encodes the α3 isoform of Na,K-ATPase. In the brain, it is expressed only in neurons. Human ATP1A3 mutations produce a wide spectrum of phenotypes, but particular syndromes are associated with unique substitutions. For arginine 756, at the junction of membrane and cytoplasmic domains, mutations produce encephalopathy during febrile infections. Here we tested the pathogenicity of p.Arg756His (R756H) in isogenic mammalian cells. R756H protein had sufficient transport activity to support cells when endogenous ATP1A1 was inhibited. It had half the turnover rate of wildtype, reduced affinity for Na+, and increased affinity for K+. There was modest endoplasmic reticulum retention during biosynthesis at 37 °C but little benefit from the folding drug phenylbutyrate (4-PBA), suggesting a tolerated level of misfolding. When cells were incubated at just 39 °C, however, α3 protein level dropped without loss of β subunit, paralleled by an increase of endogenous α1. Elevated temperature resulted in internalization of α3 from the surface along with some β subunit, accompanied by cytoplasmic redistribution of a marker of lysosomes and endosomes, lysosomal-associated membrane protein 1. After return to 37 °C, α3 protein levels recovered with cycloheximide-sensitive new protein synthesis. Heating in vitro showed activity loss at a rate 20- to 30-fold faster than wildtype, indicating a temperature-dependent destabilization of protein structure. Arg756 appears to confer thermal resistance as an anchor, forming hydrogen bonds among four linearly distant parts of the Na,K-ATPase structure. Taken together, our observations are consistent with fever-induced symptoms in patients.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jae-Kyun Ko
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kyung Eun Lee
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Polina Feschenko
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison Brashear
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Moreno C, Jiao S, Yano S, Holmgren M. Disease mutations of human α3 Na +/K +-ATPase define extracellular Na + binding/occlusion kinetics at ion binding site III. PNAS NEXUS 2022; 1:pgac205. [PMID: 36304555 PMCID: PMC9585393 DOI: 10.1093/pnasnexus/pgac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Na+/K+-ATPase, which creates transmembrane electrochemical gradients by exchanging 3 Na+ for 2 K+, is central to the pathogenesis of neurological diseases such as alternating hemiplegia of childhood. Although Na+/K+-ATPase has 3 distinct ion binding sites I-III, the difficulty of distinguishing ion binding events at each site from the others hinders kinetic study of these transitions. Here, we show that binding of Na+ at each site in the human α3 Na+/K+-ATPase can be resolved using extracellular Na+-mediated transient currents. When Na+/K+-ATPase is constrained to bind and release only Na+, three kinetic components: fast, medium, and slow, can be isolated, presumably corresponding to the protein dynamics associated with the binding (or release depending on the voltage step direction) and the occlusion (or deocclusion) of each of the 3 Na+. Patient-derived mutations of residues which coordinate Na+ at site III exclusively impact the slow component, demonstrating that site III is crucial for deocclusion and release of the first Na+ into the extracellular milieu. These results advance understanding of Na+/K+-ATPase mutation pathogenesis and provide a foundation for study of individual ions' binding kinetics.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miguel Holmgren
- Correspondence should be addressed: Miguel Holmgren, Ph.D. Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Tel: +1-(301) 451-6259; E-mail:
| |
Collapse
|
5
|
Structure and function of H +/K + pump mutants reveal Na +/K + pump mechanisms. Nat Commun 2022; 13:5270. [PMID: 36085139 PMCID: PMC9463140 DOI: 10.1038/s41467-022-32793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na+ to H+ selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H+/K+ pump, a strict H+-dependent electroneutral P-type ATPase, into a bona fide Na+-dependent electrogenic Na+/K+ pump. Conversion of a H+-dependent primary-active transporter into a Na+-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H+/K+ pump, a suitable drug target to treat cystic fibrosis, and of its Na+/K+ pump-mimicking mutant in two major conformations, providing insight on how Na+ binding drives a concerted mechanism leading to Na+/K+ pump phosphorylation.
Collapse
|
6
|
Affiliation(s)
- Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
7
|
Spontarelli K, Infield DT, Nielsen HN, Holm R, Young VC, Galpin JD, Ahern CA, Vilsen B, Artigas P. Role of a conserved ion-binding site tyrosine in ion selectivity of the Na+/K+ pump. J Gen Physiol 2022; 154:e202113039. [PMID: 35657726 PMCID: PMC9171065 DOI: 10.1085/jgp.202113039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023] Open
Abstract
The essential transmembrane Na+ and K+ gradients in animal cells are established by the Na+/K+ pump, a P-type ATPase that exports three Na+ and imports two K+ per ATP hydrolyzed. The mechanism by which the Na+/K+ pump distinguishes between Na+ and K+ at the two membrane sides is poorly understood. Crystal structures identify two sites (sites I and II) that bind Na+ or K+ and a third (site III) specific for Na+. The side chain of a conserved tyrosine at site III of the catalytic α-subunit (Xenopus-α1 Y780) has been proposed to contribute to Na+ binding by cation-π interaction. We substituted Y780 with natural and unnatural amino acids, expressed the mutants in Xenopus oocytes and COS-1 cells, and used electrophysiology and biochemistry to evaluate their function. Substitutions disrupting H-bonds impaired Na+ interaction, while Y780Q strengthened it, likely by H-bond formation. Utilizing the non-sense suppression method previously used to incorporate unnatural derivatives in ion channels, we were able to analyze Na+/K+ pumps with fluorinated tyrosine or phenylalanine derivatives inserted at position 780 to diminish cation-π interaction strength. In line with the results of the analysis of mutants with natural amino acid substitutions, the results with the fluorinated derivatives indicate that Na+-π interaction with the phenol ring at position 780 contributes minimally, if at all, to the binding of Na+. All Y780 substitutions decreased K+ apparent affinity, highlighting that a state-dependent H-bond network is essential for the selectivity switch at sites I and II when the pump changes conformational state.
Collapse
Affiliation(s)
- Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Hang N. Nielsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Victoria C. Young
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jason D. Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
8
|
Short B. How a tyrosine primes the pump. J Gen Physiol 2022; 154:213284. [PMID: 35703917 DOI: 10.1085/jgp.202213199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study uses both natural and unnatural amino acid substitutions to examine how a key tyrosine residue controls the selectivity of the Na+/K+ pump.
Collapse
|
9
|
Vetro A, Nielsen HN, Holm R, Hevner RF, Parrini E, Powis Z, Møller RS, Bellan C, Simonati A, Lesca G, Helbig KL, Palmer EE, Mei D, Ballardini E, Van Haeringen A, Syrbe S, Leuzzi V, Cioni G, Curry CJ, Costain G, Santucci M, Chong K, Mancini GMS, Clayton-Smith J, Bigoni S, Scheffer IE, Dobyns WB, Vilsen B, Guerrini R. ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria. Brain 2021; 144:1435-1450. [PMID: 33880529 DOI: 10.1093/brain/awab052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
Collapse
Affiliation(s)
- Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Hang N Nielsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Zoe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Centre, Filadelfia, Denmark.,Department of Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Cristina Bellan
- Department of Neonatal Intensive Care Unit, Bolognini Hospital, ASST-Bergamo Est, Seriate, Italy
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Gaétan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth E Palmer
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elisa Ballardini
- Neonatal Intensive Care Unit, Pediatric Section, Department of Medical Sciences, Ferrara University, Ferrara, Italy
| | - Arie Van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margherita Santucci
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy.,DIBINEM, University of Bologna, Bologna, Italy
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Mother and Child, Ferrara University Hospital, Ferrara, Italy
| | - Ingrid E Scheffer
- University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | | |
Collapse
|
10
|
Moreno C, Yano S, Bezanilla F, Latorre R, Holmgren M. Transient Electrical Currents Mediated by the Na +/K +-ATPase: A Tour from Basic Biophysics to Human Diseases. Biophys J 2020; 119:236-242. [PMID: 32579966 PMCID: PMC7376075 DOI: 10.1016/j.bpj.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
The Na+/K+-ATPase is a chemical molecular machine responsible for the movement of Na+ and K+ ions across the cell membrane. These ions are moved against their electrochemical gradients, so the protein uses the free energy of ATP hydrolysis to transport them. In fact, the Na+/K+-ATPase is the single largest consumer of energy in most cells. In each pump cycle, the protein sequentially exports 3Na+ out of the cell, then imports 2K+ into the cell at an approximate rate of 200 cycles/s. In each half cycle of the transport process, there is a state in which ions are stably trapped within the permeation pathway of the protein by internal and external gates in their closed states. These gates are required to open alternately; otherwise, passive ion diffusion would be a wasteful end of the cell's energy. Once one of these gates open, ions diffuse from their binding sites to the accessible milieu, which involves moving through part of the electrical field across the membrane. Consequently, ions generate transient electrical currents first discovered more than 30 years ago. They have been studied in a variety of preparations, including native and heterologous expression systems. Here, we review three decades' worth of work using these transient electrical signals to understand the kinetic transitions of the movement of Na+ and K+ ions through the Na+/K+-ATPase and propose the significance that this work might have to the understanding of the dysfunction of human pump orthologs responsible for some newly discovered neurological pathologies.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Sho Yano
- Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Holmgren
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|