1
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
2
|
Tian Y, Ming J. Melatonin inhibits osteoclastogenesis via RANKL/OPG suppression mediated by Rev-Erbα in osteoblasts. J Cell Mol Med 2022; 26:4032-4047. [PMID: 35726597 PMCID: PMC9279587 DOI: 10.1111/jcmm.17440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic osteoporosis is secondary osteoporosis and a serious complication of diabetes with a high incidence rate and poor prognosis. The specific mechanism of diabetic osteoporosis is unclear, and prevention and treatment options are limited. Recently, melatonin has been found to prevent and treat diabetic osteoporosis. Herein, we investigated the mechanism whereby melatonin inhibits osteoclastogenesis and identified a new target for osteoporosis treatment. We established an in vitro osteoblast–osteoclast co‐culture system as a diabetic osteoporosis model. Osteoclastogenesis was determined using tartrate‐resistant acid phosphatase staining and cathepsin K expression. Real‐time PCR was used to ascertain expression of microRNA mir‐882, targeting Rev‐Erbα. Western blotting was performed to detect the expression of Rev‐Erbα, receptor activator of NF‐kB ligand (RANKL), and osteoprotegerin (OPG), and ELISA was utilized to analyse the secreted form of RANKL. High glucose promoted osteoclastogenesis and elevated the RANKL/OPG ratio in osteoblasts, while melatonin reversed these effects. High glucose inhibited Rev‐Erbα expression, while melatonin promoted its expression. Conversely, high glucose promoted mir‐882 expression, while melatonin inhibited it. We infer that melatonin inhibits RANKL expression in osteoblasts via the mir‐882/Rev‐Erbα axis, thus inhibiting osteoclastogenesis. Our findings provide insights into diabetic osteoporosis and identify a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yihao Tian
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jian Ming
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Habib SA, Kamal MM, El-Maraghy SA, Senousy MA. Exendin-4 enhances osteogenic differentiation of adipose tissue mesenchymal stem cells through the receptor activator of nuclear factor-kappa B and osteoprotegerin signaling pathway. J Cell Biochem 2022; 123:906-920. [PMID: 35338509 DOI: 10.1002/jcb.30236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The capability of mesenchymal stem cells (MSCs) to repair bone damage and defects has long been investigated. The receptor activator of nuclear factor-kappa B (RANK), its ligand (RANKL) and the decoy receptor osteoprotegerin (OPG) axis is crucial to keep the equilibrium between osteoblastic and osteoclastic activity. Exendin-4 utilization increased bone formation and enhanced bone integrity. This study aimed to investigate the mentioned axis and determine the effect of exendin-4 upon adipose mesenchymal stem cells (Ad-MSCs) osteogenic differentiation. Ad-MSCs were isolated from rat epididymal fat, followed by characterization and then differentiation into osteocytes both in the presence or absence of exendin-4. Osteogenic differentiation was evaluated by alizarin red staining and the expression of osteogenic markers; using reverse transcriptase-quantitative polymerase chain reaction, western blotting and enzyme-linked immunoassay. MSCs derived from rat epididymal fat were isolated and characterized, along with their differentiation into osteocytes. The differentiated cells were alizarin red-stained, showing increased staining intensity upon addition of exendin-4. Moreover, the addition of exendin-4 elevated the messenger RNA expression levels of osteogenic markers; runt-related transcription factor-2 (RUNX-2), osteocalcin, and forkhead box protein O-1 while reducing the expression of the adipogenic marker peroxisome-proliferator-activated receptor-gamma. Exendin-4 addition elevated OPG levels in the supernatant of osteogenic differentiated cells. Moreover, exendin-4 elevated the protein levels of glucagon-like peptide-1 receptor and RUNX-2, while decreasing both RANK and RANKL. In conclusion, osteogenic differentiation of Ad-MSCs is associated with increased osteoblastic rather than osteoclastic activity. The findings of this study suggest that exendin-4 can enhance Ad-MSCs osteogenic differentiation partially through the RANK/RANKL/OPG axis.
Collapse
Affiliation(s)
- Sarah A Habib
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Mendonça F, Soares R, Carvalho D, Freitas P. The Impact of Bariatric Surgery on Bone Health: State of the Art and New Recognized Links. Horm Metab Res 2022; 54:131-144. [PMID: 35276738 DOI: 10.1055/a-1767-5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bariatric surgery (BS) is the most effective therapy for severe obesity, which improves several comorbidities (such as diabetes, hypertension, dyslipidemia, among others) and results in marked weight loss. Despite these consensual beneficial effects, sleeve gastrectomy and Roux-en-Y gastric bypass (the two main bariatric techniques) have also been associated with changes in bone metabolism and progressive bone loss. The objective of this literature review is to examine the impact of bariatric surgery on bone and its main metabolic links, and to analyze the latest findings regarding the risk of fracture among patients submitted to bariatric surgery.
Collapse
Affiliation(s)
- Fernando Mendonça
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Raquel Soares
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Davide Carvalho
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Paula Freitas
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Zeng Z, Fei L, Yang J, Zuo J, Huang Z, Li H. MiR-27a-3p Targets GLP1R to Regulate Differentiation, Autophagy, and Release of Inflammatory Factors in Pre-Osteoblasts via the AMPK Signaling Pathway. Front Genet 2022; 12:783352. [PMID: 35069685 PMCID: PMC8766720 DOI: 10.3389/fgene.2021.783352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/30/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: Osteoporosis is caused by the dysregulation of bone homeostasis which is synergistically mediated by osteoclasts and osteoblasts. MiR-27a-3p is a key inhibitor of bone formation. Hence, unearthing the downstream target gene of miR-27a-3p is of great significance to understand the molecular mechanism of osteoporosis. Methods: Bioinformatics analysis was utilized to find the downstream target gene of miR-27a-3p, and dual-luciferase reporter assay was conducted to validate the interplay of miR-27a-3p and GLP1R. Besides, qRT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were employed to verify the impact of miR-27a-3p on GLP1R expression and the differentiation, autophagy, and inflammatory response of MC3T3-E1 pre-osteoblasts. Results: Dual-luciferase assay validated that miR-27a-3p directly targeted GLP1R. Additionally, posttreatment of MC3T3-E1 cells with miR-27a-3p mimics resulted in a remarkable decrease in expression levels of GLP1R, cell differentiation marker gene, autophagy marker gene, and AMPK. These results indicated that miR-27a-3p targeted GLP1R to inhibit AMPK signal activation and pre-osteoblast differentiation and autophagy, while promoting the release of inflammatory factors. Conclusion: The miR-27a-3p/GLP1R regulatory axis in pre-osteoblasts contributes to understanding the molecular mechanism of osteoporosis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Joint Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liangyu Fei
- Department of Nephrology and Rheumatology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juntao Yang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Zuo
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zelin Huang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Li
- Department of Hand and Foot Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Katra B, Fedak D, Matejko B, Małecki MT, Wędrychowicz A. The enteroendocrine-osseous axis in patients with long-term type 1 diabetes mellitus. Bone 2021; 153:116105. [PMID: 34245933 DOI: 10.1016/j.bone.2021.116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The relationship between the gut and skeleton is increasingly recognized as a component of the regulation of carbohydrate metabolism. The aim of our study was to assess the relationship between bone mineral density (BMD), incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), intestinotrophic peptide glucagon-like peptide-2 (GLP-2) and osteocalcin isoforms in patients with long-term type 1 diabetes (T1D) when compared to healthy controls. METHODS Eighty two patients with long term T1D, treated in the Department of Metabolic Diseases and 53 healthy controls were recruited to the study. Long term disease duration was defined as lasting for more than 10 years. The control group was selected among age- and sex-matched healthy people. Fasting blood samples were collected to measure levels of incretin hormones (GLP-1, GLP-2, GIP), two forms of osteocalcin (uncarboxylated (ucOC), and carboxylated (cOC)), and additional biochemical parameters associated with glucose and bone metabolism (HbA1c, calcium, phosphorus, 25(OH)D3, PTH). RESULTS Patients with T1D had higher BMI than in controls (p = 0.02). There was no difference in BMD at the lumbar spine and the femoral neck between patients with long-term T1D and healthy ones. Z-score values in both groups were within normal ranges. The level of GIP was significantly higher in T1D patients (p = 0.0002) in comparison to the healthy ones. The levels of GLP-1 and GLP-2 did not differ between T1D patients and controls. In the T1D group, strong, positive associations were found between serum levels of GLP-1 and cOC (r = 0.546, p < 0.001) and between GLP-1 and total OC (r = 0.51, p < 0.001), also after adjusting for BMI (p < 0.001 and p < 0.001, respectively). Significant positive associations were also found between serum levels of GLP-2 and cOC (r = 0.27, p = 0.013) and between GLP-2 and total OC (r = 0.25, p = 0.018), also in a multivariate regression (p = 0.009, p = 0,175, respectively). Moreover, in T1D patients, GLP-1 correlated positively with the femoral neck BMD (g/cm2) (r = 0.265, p = 0.016) and this association was statistically significant after adjusting for BMI (p = 0.011). These correlations were not present in the control group. The only significant correlation observed in the control group was between OC and BMD of the neck (p = 0.049 for neck BMD g/cm2, and p = 0.041 for neck Z-score). CONCLUSIONS Our data suggests an effect of gut hormones on bone in long-term T1D, which could be associated with OC activity, however we did not find a direct connection with glucose metabolism. GLP-1 could have a possible, protective role on bone mineral density in patients with T1D. The data from our study suggests that gut hormones could be considered as a new link in the skeleton - pancreatic endocrine loop in patients with T1D.
Collapse
Affiliation(s)
- Barbara Katra
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Danuta Fedak
- Department of Diagnostics, Jagiellonian University Medical College, Kraków, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Wędrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
7
|
Zhou Y, Xue X, Guo Y, Liu H, Hou Z, Chen Z, Wang N, Li F, Wang Y. A quinoxaline-based compound ameliorates bone loss in ovariectomized mice. Exp Biol Med (Maywood) 2021; 246:2502-2510. [PMID: 34308655 DOI: 10.1177/15353702211032133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DMB (6,7-dichloro-2-methylsulfonyl-3-Ntert-butylaminoquinoxaline) is a quinoxaline-based compound that has been investigated as a glucagon-like peptide-1 receptor (GLP-1R) agonist. To clarify anti-osteoporosis effect of DMB, an osteoporotic mice model was established by ovariectomy (OVX) operation. The OVX mice were given intraperitoneally DMB, exendin-4 (EX-4), or 17β-estradiol (E2) for two months. Then bone mass and structure, and bone morphometric parameters were examined by micro-CT. Weight gain and food consumption, bone turnover markers, and biomechanical strength of the femur were tested, and bone histomorphometry was analyzed. The food intake and weight gain was obviously reduced by E2 or EX-4, but not DMB. However, DMB or EX-4 treatment obviously inhibited skeletal deterioration and enhanced bone strength. The improvement involved in the increased osteoblast number and level of bone formation markers, and reduced osteoclasts number and level of bone resorption markers. In addition, DMB was found to stimulate osteoblastogenesis-related marker gene expression. These results demonstrated that DMB ameliorated bone loss mainly via induction of bone formation, which suggests that the small molecule compound might be applied to the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China.,Science and Technology Innovation Platform of Shaanxi Provincial Research Center for Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an 710021, PR China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanyan Guo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, PR China
| | - Huan Liu
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Ning Wang
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Fen Li
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Yang Wang
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| |
Collapse
|
8
|
Kreitman A, Schneider SH, Hao L, Schlussel Y, Bello NT, Shapses SA. Reduced postprandial bone resorption and greater rise in GLP-1 in overweight and obese individuals after an α-glucosidase inhibitor: a double-blinded randomized crossover trial. Osteoporos Int 2021; 32:1379-1386. [PMID: 33432459 DOI: 10.1007/s00198-020-05791-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
UNLABELLED When taken with a meal, α-glucosidase inhibitors (α-GI) reduce the rise in postprandial glucose and increase glucagon-like peptide-1 (GLP-1), and this may lower bone turnover. In this study, a salacinol-type α-GI increased GLP-1 and markedly reduced postprandial bone resorption compared to placebo, suggesting it could have implications for bone health. INTRODUCTION Animal and clinical trials indicate that α-glucosidase inhibitors attenuate postprandial glycemic indices and increase secretion of GLP-1. In addition, GLP-1 acts on bone by inhibiting resorption. The goal in this study was to determine if a salacinol α-GI alters postprandial bone turnover and can be explained by changes in serum GLP-1. METHODS In this double-blind, placebo-controlled crossover study, healthy overweight/obese adults (body mass index 29.0 ± 3.8 kg/m2; 21-59 years; n = 21) received a fixed breakfast and, in random order, were administered Salacia chinensis (SC; 500 mg) or placebo. A fasting blood sample was taken before and at regular intervals for 3 h after the meal. Serum was measured for bone turnover markers, C-terminal telopeptide of type I collagen (CTX) and osteocalcin, and for glycemic indices and gut peptides. RESULTS Compared to placebo, SC attenuated the bone resorption marker, CTX, at 60, 90, and 120 min (p < 0.05) after the meal, and decreased osteocalcin, at 180 min (p < 0.05). As expected, SC attenuated the postprandial rise in glucose compared with placebo, whereas GLP-1 was increased at 60 min (p < 0.05) with SC. Serum GLP-1 explained 41% of the variance for change in postprandial CTX (p < 0.05). CONCLUSION This study indicates that attenuating postprandial glycemic indices, with an α-GI, markedly decreases postprandial bone resorption and can be explained by the rise in GLP-1. Future studies should determine whether longer term α-GI use benefits bone health.
Collapse
Affiliation(s)
- A Kreitman
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - S H Schneider
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - L Hao
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - Y Schlussel
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - N T Bello
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S A Shapses
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA.
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
9
|
Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, Zhang Y, Ding S. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front Pharmacol 2021; 12:697442. [PMID: 34220521 PMCID: PMC8243369 DOI: 10.3389/fphar.2021.697442] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and osteoporosis are closely related and have complex influencing factors. The impact of anti-diabetic drugs on bone metabolism has received more and more attention. Type 2 diabetes mellitus (T2DM) would lead to bone fragility, high risk of fracture, poor bone repair and other bone-related diseases. Furthermore, hypoglycemic drugs used to treat T2DM may have notable detrimental effects on bones. Thus, the clinically therapeutic strategy for T2DM should not only effectively control the patient's glucose levels, but also minimize the complications of bone metabolism diseases. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are novel and promising drug for the treatment of T2DM. Some studies have found that GLP-1RAs may play an anti-osteoporotic effect by controlling blood sugar levels, promoting bone formation and inhibiting bone resorption. However, in clinical practice, the specific effects of GLP-1RA on fracture risk and osteoporosis have not been clearly defined and evidenced. This review summarizes the current research findings by which GLP-1RAs treatment of diabetic osteoporosis, postmenopausal osteoporosis and glucocorticoid-induced osteoporosis and describes possible mechanisms, such as GLP-1R/MAPK signaling pathway, GLP-1R/PI3K/AKT signaling pathway and Wnt/β-catenin pathway, that are associated with GLP-1RAs and osteoporosis. The specific role and related mechanisms of GLP-1RAs in the bone metabolism of patients with different types of osteoporosis need to be further explored and clarified.
Collapse
Affiliation(s)
- Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Runkai Hu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|