1
|
Boukouaci W, Rivera-Franco MM, Volt F, Wu CL, Rafii H, Cappelli B, Scigliuolo GM, Kenzey C, Ruggeri A, Rocha V, Gluckman E, Tamouza R. Comparative analysis of the variability of the human leukocyte antigen peptide-binding pockets in patients with acute leukaemia. Br J Haematol 2023; 200:197-209. [PMID: 36263991 DOI: 10.1111/bjh.18517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/14/2023]
Abstract
The association between acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML) and the human leukocyte antigens (HLA) has rarely been studied in terms of diversity of peptide-binding pockets. The objective of this study was to analyse whether motifs of HLA class I and class II peptide-binding pockets and/or their amino acid positions were differentially associated with ALL and AML. We included 849 patients from the Eurocord/European Blood and Marrow Transplant registry. The HLA peptide-binding pockets whose amino acid variability was analysed were B and F for HLA class I, P4, P6, and P9 for HLA-DRB1, and P4 and P9 for HLA-DQB1. The motif RFDRAY in P4 of HLA-DRB1*16:01/02/03/05 alleles and the motif YYVSY in P9 of HLA-DQB1*05:02/04/05 alleles, were statistically associated with ALL (corrected p value [pc ] = 0.001 and pc = 0.035 respectively). The frequency of serine 57 in the P9 of HLA-DQB1 was higher in ALL (odds ratio 2.09, 95% confidence interval: 1.27-3.44; pc = 0.037). Our analysis suggests that specific motifs in terms of HLA class II pockets and amino acids might be unique to ALL. The associations identified in this study encourage further investigation oF the role of HLA peptide-binding pockets and their amino acids in immune processes underpinning acute leukaemia and ultimately in immunotherapy settings.
Collapse
Affiliation(s)
| | - Monica M Rivera-Franco
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Ching-Lien Wu
- INSERM U955, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Hanadi Rafii
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France.,Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France.,Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Chantal Kenzey
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Annalisa Ruggeri
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France.,Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanderson Rocha
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France.,Service of Hematology, Transfusion and Cell Therapy, and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Faculty of Medicine, Hospital das Clínicas, São Paulo University, São Paulo, Brazil
| | - Eliane Gluckman
- Eurocord, Hôpital Saint-Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France.,Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Ryad Tamouza
- INSERM U955, IMRB, Univ Paris Est Créteil, Créteil, France
| |
Collapse
|
2
|
Kulkarni NV, Shetty RA, Kumari N S, Shetty VV, Krishna R, Arumugam M, Kalal AA, Shetty P. Correlation of preferentially expressed antigen of melanoma (PRAME) gene expression with clinical characteristics in acute leukemia patients. J Genet Eng Biotechnol 2022; 20:97. [PMID: 35788450 PMCID: PMC9256891 DOI: 10.1186/s43141-022-00376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
Background Preferentially expressed antigen of melanoma (PRAME) gene is regularly overexpressed in acute leukemia (AL) and other malignant diseases which are recognized by human leucocyte antigen (HLA-24) located in the human chromosome of 22q11 coded by 509 amino acids. To rule out the PRAME gene expression in AL patients and its correlation with clinical characteristics in the Indian population set up by RT-qPCR. Results A total of 42 samples collected, 29 (69.4%) were males, and 13 (30.95%) were females, with a mean and standard deviation for age were 39.07 ± 22.22 years. Of which AML were of 22 (52.38%) cases, ALL were of 14 (33.33%) cases, and 6 (14.2%) cases which included other forms of leukemia. PRAME gene expression was highly expressed in thirty-three 27 (64.28%) AL patients compared to the least expression in healthy individuals. No significant difference between the different forms of AL (p=0.3203) was observed. Cytogenetic analysis of normal karyotype (NK), abnormal karyotype (Ab. K), and culture failure (CF) displayed statistical non-significance (p=0.5801). Among cytogenetic abnormalities obtained, no significant differences between the groups were observed (p=0.8507). Chloride, potassium, and absolute lymphocyte count (ALC) was found to be statistically significant with p=0.0038**, p=0.0358*, and p=0.0216*, respectively, between all other clinical characteristics. There was no correlation between the PRAME gene expression and clinical parameters. Conclusion PRAME gene expression in AL patients was highly expressed, comparable to studies reported globally with significant cytogenetic results. PRAME gene could be used as a potential diagnostic marker for monitoring the malignancies and minimal residual disease in AL.
Collapse
Affiliation(s)
- Nagaraj V Kulkarni
- Central Research Laboratory, KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to be) University, Derlakatte, Mangalore, Karnataka, 575 018, India
| | - Reshma A Shetty
- Central Research Laboratory, KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to be) University, Derlakatte, Mangalore, Karnataka, 575 018, India
| | - Suchetha Kumari N
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be) University, Nityanandanagar, Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Vijith V Shetty
- Department of Medical Oncology, KS Hegde Medical Academy, NITTE (Deemed to be University), Derlakatte, Mangalore, Karnataka, 575 018, India
| | - Rajesh Krishna
- Yenepoya Medical College Hospital, Yenepoya (Deemed to be) University, Nityanandanagar, Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Meenakshi Arumugam
- Central Research Laboratory, KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to be) University, Derlakatte, Mangalore, Karnataka, 575 018, India
| | - Akanksha A Kalal
- Central Research Laboratory, KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to be) University, Derlakatte, Mangalore, Karnataka, 575 018, India
| | - Prashanth Shetty
- Central Research Laboratory, KSHEMA Centre for Genetic Services, KS Hegde Medical Academy, NITTE (Deemed to be) University, Derlakatte, Mangalore, Karnataka, 575 018, India.
| |
Collapse
|
3
|
Acute Myeloid Leukemia: Is It T Time? Cancers (Basel) 2021; 13:cancers13102385. [PMID: 34069204 PMCID: PMC8156992 DOI: 10.3390/cancers13102385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease driven by impaired differentiation of hematopoietic primitive cells toward myeloid lineages (monocytes, granulocytes, red blood cells, platelets), leading to expansion and accumulation of "stem" and/or "progenitor"-like or differentiated leukemic cells in the bone marrow and blood. AML progression alters the bone marrow microenvironment and inhibits hematopoiesis' proper functioning, causing sustained cytopenia and immunodeficiency. This review describes how the AML microenvironment influences lymphoid lineages, particularly T lymphocytes that originate from the thymus and orchestrate adaptive immune response. We focus on the elderly population, which is mainly affected by this pathology. We discuss how a permissive AML microenvironment can alter and even worsen the thymic function, T cells' peripheral homeostasis, phenotype, and functions. Based on the recent findings on the mechanisms supporting that AML induces quantitative and qualitative changes in T cells, we suggest and summarize current immunotherapeutic strategies and challenges to overcome these anomalies to improve the anti-leukemic immune response and the clinical outcome of patients.
Collapse
|