1
|
Gore SV, Del Rosario Hernández T, Creton R. Behavioral effects of visual stimuli in adult zebrafish using a novel eight-tank imaging system. Front Behav Neurosci 2024; 18:1320126. [PMID: 38529416 PMCID: PMC10962262 DOI: 10.3389/fnbeh.2024.1320126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Animals respond to various environmental cues. Animal behavior is complex, and behavior analysis can greatly help to understand brain function. Most of the available behavioral imaging setups are expensive, provide limited options for customization, and allow for behavioral imaging of one animal at a time. Methods The current study takes advantage of adult zebrafish as a model organism to study behavior in a novel behavioral setup allowing one to concurrently image 8 adult zebrafish. Results Our results indicate that adult zebrafish show a unique behavioral profile in response to visual stimuli such as moving lines. In the presence of moving lines, the fish spent more time exploring the tank and spent more time toward the edges of the tanks. In addition, the fish moved and oriented themselves against the direction of the moving lines, indicating a negative optomotor response (OMR). With repeated exposure to moving lines, we observed a reduced optomotor response in adult zebrafish. Discussion Our behavioral setup is relatively inexpensive, provides flexibility in the presentation of various animated visual stimuli, and offers improved throughput for analyzing behavior in adult zebrafish. This behavioral setup shows promising potential to quantify various behavioral measures and opens new avenues to understand complex behaviors.
Collapse
Affiliation(s)
- Sayali V. Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | | | | |
Collapse
|
2
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Gore SV, Kakodkar R, Del Rosario Hernández T, Edmister ST, Creton R. Zebrafish Larvae Position Tracker (Z-LaP Tracker): a high-throughput deep-learning behavioral approach for the identification of calcineurin pathway-modulating drugs using zebrafish larvae. Sci Rep 2023; 13:3174. [PMID: 36823315 PMCID: PMC9950053 DOI: 10.1038/s41598-023-30303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Brain function studies greatly depend on quantification and analysis of behavior. While behavior can be imaged efficiently, the quantification of specific aspects of behavior is labor-intensive and may introduce individual biases. Recent advances in deep learning and artificial intelligence-based tools have made it possible to precisely track individual features of freely moving animals in diverse environments without any markers. In the current study, we developed Zebrafish Larvae Position Tracker (Z-LaP Tracker), a modification of the markerless position estimation software DeepLabCut, to quantify zebrafish larval behavior in a high-throughput 384-well setting. We utilized the high-contrast features of our model animal, zebrafish larvae, including the eyes and the yolk for our behavioral analysis. Using this experimental setup, we quantified relevant behaviors with similar accuracy to the analysis performed by humans. The changes in behavior were organized in behavioral profiles, which were examined by K-means and hierarchical cluster analysis. Calcineurin inhibitors exhibited a distinct behavioral profile characterized by increased activity, acoustic hyperexcitability, reduced visually guided behaviors, and reduced habituation to acoustic stimuli. The developed methodologies were used to identify 'CsA-type' drugs that might be promising candidates for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sayali V. Gore
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Rohit Kakodkar
- grid.40263.330000 0004 1936 9094Center for Computation and Visualization, Brown University, Providence, RI USA
| | - Thaís Del Rosario Hernández
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Sara Tucker Edmister
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Robbert Creton
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| |
Collapse
|
5
|
Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review. Int J Mol Sci 2022; 23:ijms23126647. [PMID: 35743088 PMCID: PMC9223633 DOI: 10.3390/ijms23126647] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
To discover new molecules or review the biological activity and toxicity of therapeutic substances, drug development, and research relies on robust biological systems to obtain reliable results. Phenotype-based screenings can transpose the organism’s compensatory pathways by adopting multi-target strategies for treating complex diseases, and zebrafish emerged as an important model for biomedical research and drug screenings. Zebrafish’s clear correlation between neuro-anatomical and physiological features and behavior is very similar to that verified in mammals, enabling the construction of reliable and relevant experimental models for neurological disorders research. Zebrafish presents highly conserved physiological pathways that are found in higher vertebrates, including mammals, along with a robust behavioral repertoire. Moreover, it is very sensitive to pharmacological/environmental manipulations, and these behavioral phenotypes are detected in both larvae and adults. These advantages align with the 3Rs concept and qualify the zebrafish as a powerful tool for drug screenings and pre-clinical trials. This review highlights important behavioral domains studied in zebrafish larvae and their neurotransmitter systems and summarizes currently used techniques to evaluate and quantify zebrafish larvae behavior in laboratory studies.
Collapse
|
6
|
Tucker Edmister S, Del Rosario Hernández T, Ibrahim R, Brown CA, Gore SV, Kakodkar R, Kreiling JA, Creton R. Novel use of FDA-approved drugs identified by cluster analysis of behavioral profiles. Sci Rep 2022; 12:6120. [PMID: 35449173 PMCID: PMC9023506 DOI: 10.1038/s41598-022-10133-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Repurposing FDA-approved drugs is an efficient and cost-effective approach in the development of therapeutics for a broad range of diseases. However, prediction of function can be challenging, especially in the brain. We screened a small-molecule library with FDA-approved drugs for effects on behavior. The studies were carried out using zebrafish larvae, imaged in a 384-well format. We found that various drugs affect activity, habituation, startle responses, excitability, and optomotor responses. The changes in behavior were organized in behavioral profiles, which were examined by hierarchical cluster analysis. One of the identified clusters includes the calcineurin inhibitors cyclosporine (CsA) and tacrolimus (FK506), which are immunosuppressants and potential therapeutics in the prevention of Alzheimer's disease. The calcineurin inhibitors form a functional cluster with seemingly unrelated drugs, including bromocriptine, tetrabenazine, rosiglitazone, nebivolol, sorafenib, cabozantinib, tamoxifen, meclizine, and salmeterol. We propose that drugs with 'CsA-type' behavioral profiles are promising candidates for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Tucker Edmister
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Rahma Ibrahim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Cameron A Brown
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Rohit Kakodkar
- Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
7
|
Edmister ST, Ibrahim R, Kakodkar R, Kreiling JA, Creton R. A zebrafish model for calcineurin-dependent brain function. Behav Brain Res 2022; 416:113544. [PMID: 34425181 PMCID: PMC8903086 DOI: 10.1016/j.bbr.2021.113544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023]
Abstract
Small-molecule modulators of calcineurin signaling have been proposed as potential therapeutics in Down syndrome and Alzheimer's disease. Models predict that in Down syndrome, suppressed calcineurin-NFAT signaling may be mitigated by proINDY, which activates NFAT, the nuclear factor of activated T-cells. Conversely, elevated calcineurin signaling in Alzheimer's disease may be suppressed with the calcineurin inhibitors cyclosporine and tacrolimus. Such small-molecule treatments may have both beneficial and adverse effects. The current study examines the effects of proINDY, cyclosporine and tacrolimus on behavior, using zebrafish larvae as a model system. To suppress calcineurin signaling, larvae were treated with cyclosporine and tacrolimus. We found that these calcineurin inhibitors induced hyperactivity, suppressed visually-guided behaviors, acoustic hyperexcitability and reduced habituation to acoustic stimuli. To activate calcineurin-NFAT signaling, larvae were treated with proINDY. ProINDY treatment reduced activity and stimulated visually-guided behaviors, opposite to the behavioral changes induced by calcineurin inhibitors. The opposing effects suggest that activity and visually-guided behaviors are regulated by the calcineurin-NFAT signaling pathway. A central role of calcineurin-NFAT signaling is further supported by co-treatments of calcineurin inhibitors and proINDY, which had therapeutic effects on activity and visually-guided behaviors. However, these co-treatments adversely increased excitability, suggesting that some behaviors are regulated by other calcineurin signaling pathways. Overall, the developed methodologies provide an efficient high-throughput platform for the evaluation of modulators of calcineurin signaling that restore neural function, while avoiding adverse side effects, in a complex neural system.
Collapse
Affiliation(s)
- Sara Tucker Edmister
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rahma Ibrahim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Rohit Kakodkar
- Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Corresponding author.
| |
Collapse
|
8
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|