1
|
Mishima K, Kano N. Contribution Factors of the First Kind Calculated for the Marcus Electron-Transfer Rate and Their Applications. J Phys Chem B 2023; 127:8509-8524. [PMID: 37782079 DOI: 10.1021/acs.jpcb.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this study, we applied the concept of the "contribution factor of the first kind (CFFK)" to the original electron-transfer (ET) rate theory proposed by Marcus. Mathematical derivations provided simple and convenient formulas for estimating the relative contributions of ten physical and chemical parameters involved in the Marcus ET rate formula: (1) the maximum strength of the electronic coupling energy between two molecules, (2) the exponential decay rate of the electronic coupling energy versus the distance between both molecules, (3) the distance between both molecules, (4) the equilibrium distance between both molecules, (5) the Gibbs free energy, (6) reorganization free energy in the prefactor of the Marcus ET rate equation, (7) reorganization free energy in the denominator of the exponential term, (8) reorganization free energy in the argument of the exponential term, (9) Boltzmann constant times absolute temperature in the prefactor of the rate equation, and (10) Boltzmann constant times absolute temperature in the denominator of the exponential term. We applied our theories to (i) ET reactions at bacterial photosynthesis reaction centers, PSI and PSII, and soluble ferredoxins (Fd); (ii) intraprotein ET reactions for designed azurin mutants; and (iii) ET reactions in flavodoxin (Fld). The formulas and calculations suggest that the theory behind the CFFK is useful for quantitatively identifying major and minor physical and chemical factors and corresponding trade-offs, all of which affect the magnitude of the Marcus ET rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Independent Researcher, Bunkyo-ku, Tokyo 113-0024, Japan
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Jian T, Zhou Y, Wang P, Yang W, Mu P, Zhang X, Zhang X, Chen CL. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat Commun 2022; 13:3025. [PMID: 35641490 PMCID: PMC9156750 DOI: 10.1038/s41467-022-30285-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Developing tunable and stable peroxidase mimetics with high catalytic efficiency provides a promising opportunity to improve and expand enzymatic catalysis in lignin depolymerization. A class of peptoid-based peroxidase mimetics with tunable catalytic activity and high stability is developed by constructing peptoids and hemins into self-assembled crystalline nanomaterials. By varying peptoid side chain chemistry to tailor the microenvironment of active sites, these self-assembled peptoid/hemin nanomaterials (Pep/hemin) exhibit highly modulable catalytic activities toward two lignin model substrates 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 3,3’,5,5’-tetramethylbenzidine. Among them, a Pep/hemin complex containing the pyridyl side chain showed the best catalytic efficiency (Vmax/Km = 5.81 × 10−3 s−1). These Pep/hemin catalysts are highly stable; kinetics studies suggest that they follow a peroxidase-like mechanism. Moreover, they exhibit a high efficacy on depolymerization of a biorefinery lignin. Because Pep/hemin catalysts are highly robust and tunable, we expect that they offer tremendous opportunities for lignin valorization to high value products. Peroxidase mimics are currently being investigated as catalysts for lignin depolymerisation. In this article, the authors investigate a class of self-assembled and highly stable peptoid/hemin nanomaterials as peroxidase mimics that are highly stable and tuneable for the depolymerisation of a biorefinery lignin.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Peipei Wang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiao Zhang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA.
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|